Nuprl Lemma : filter_filter2
∀[T:Type]. ∀[P:T ⟶ 𝔹]. ∀[L:T List]. (filter(P;L) = filter2(λi.(P L[i]);L) ∈ (T List))
Proof
Definitions occuring in Statement :
filter2: filter2(P;L)
,
select: L[n]
,
filter: filter(P;l)
,
list: T List
,
bool: 𝔹
,
uall: ∀[x:A]. B[x]
,
apply: f a
,
lambda: λx.A[x]
,
function: x:A ⟶ B[x]
,
universe: Type
,
equal: s = t ∈ T
Definitions unfolded in proof :
member: t ∈ T
,
prop: ℙ
,
uall: ∀[x:A]. B[x]
,
int_seg: {i..j-}
,
uimplies: b supposing a
,
guard: {T}
,
lelt: i ≤ j < k
,
and: P ∧ Q
,
all: ∀x:A. B[x]
,
decidable: Dec(P)
,
or: P ∨ Q
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
false: False
,
implies: P
⇒ Q
,
not: ¬A
,
top: Top
,
ge: i ≥ j
,
le: A ≤ B
,
so_lambda: λ2x.t[x]
,
subtype_rel: A ⊆r B
,
so_apply: x[s]
,
less_than: a < b
,
squash: ↓T
,
bool: 𝔹
,
unit: Unit
,
it: ⋅
,
btrue: tt
,
ifthenelse: if b then t else f fi
,
uiff: uiff(P;Q)
,
bfalse: ff
,
true: True
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
select: L[n]
,
cons: [a / b]
Lemmas referenced :
bool_wf,
equal_wf,
cons_wf,
filter2_wf,
select_wf,
int_seg_properties,
length_wf,
decidable__le,
satisfiable-full-omega-tt,
intformand_wf,
intformnot_wf,
intformle_wf,
itermConstant_wf,
itermAdd_wf,
itermVar_wf,
int_formula_prop_and_lemma,
int_formula_prop_not_lemma,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_add_lemma,
int_term_value_var_lemma,
int_formula_prop_wf,
length_of_cons_lemma,
non_neg_length,
decidable__lt,
intformless_wf,
int_formula_prop_less_lemma,
equal-wf-T-base,
assert_wf,
bnot_wf,
not_wf,
list_induction,
list_wf,
filter_wf5,
subtype_rel_dep_function,
l_member_wf,
set_wf,
int_seg_wf,
filter_nil_lemma,
filter2_nil_lemma,
nil_wf,
filter_cons_lemma,
squash_wf,
true_wf,
eqtt_to_assert,
cons_filter2,
iff_weakening_equal,
uiff_transitivity,
eqff_to_assert,
assert_of_bnot,
select-cons-tl,
add-subtract-cancel
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
applyEquality,
functionExtensionality,
hypothesisEquality,
cumulativity,
cut,
introduction,
extract_by_obid,
hypothesis,
because_Cache,
thin,
hyp_replacement,
equalitySymmetry,
applyLambdaEquality,
sqequalHypSubstitution,
isectElimination,
lambdaEquality,
addEquality,
setElimination,
rename,
independent_isectElimination,
natural_numberEquality,
productElimination,
dependent_functionElimination,
unionElimination,
dependent_pairFormation,
int_eqEquality,
intEquality,
isect_memberEquality,
voidElimination,
voidEquality,
sqequalRule,
independent_pairFormation,
computeAll,
baseClosed,
isect_memberFormation,
setEquality,
lambdaFormation,
imageElimination,
independent_functionElimination,
equalityTransitivity,
equalityElimination,
imageMemberEquality,
universeEquality,
axiomEquality,
functionEquality
Latex:
\mforall{}[T:Type]. \mforall{}[P:T {}\mrightarrow{} \mBbbB{}]. \mforall{}[L:T List]. (filter(P;L) = filter2(\mlambda{}i.(P L[i]);L))
Date html generated:
2017_10_01-AM-08_35_11
Last ObjectModification:
2017_07_26-PM-04_25_44
Theory : list!
Home
Index