Nuprl Lemma : cons_filter2
∀[T:Type]. ∀[x:T]. ∀[L:T List]. ∀[P:ℕ||L|| + 1 ⟶ 𝔹].
  (filter2(P;[x / L]) = if P 0 then [x / filter2(λi.(P (i + 1));L)] else filter2(λi.(P (i + 1));L) fi  ∈ (T List))
Proof
Definitions occuring in Statement : 
filter2: filter2(P;L)
, 
length: ||as||
, 
cons: [a / b]
, 
list: T List
, 
int_seg: {i..j-}
, 
ifthenelse: if b then t else f fi 
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
lambda: λx.A[x]
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
filter2: filter2(P;L)
, 
all: ∀x:A. B[x]
, 
top: Top
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
and: P ∧ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
guard: {T}
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
nat: ℕ
, 
subtract: n - m
Lemmas referenced : 
reduce2_cons_lemma, 
int_seg_wf, 
length_wf, 
bool_wf, 
list_wf, 
false_wf, 
add_nat_plus, 
length_wf_nat, 
less_than_wf, 
nat_plus_wf, 
nat_plus_properties, 
decidable__lt, 
add-is-int-iff, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformless_wf, 
itermConstant_wf, 
itermVar_wf, 
itermAdd_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_term_value_add_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_wf, 
equal_wf, 
lelt_wf, 
equal-wf-T-base, 
assert_wf, 
bnot_wf, 
not_wf, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
cons_wf, 
squash_wf, 
true_wf, 
reduce2_shift, 
nil_wf, 
le_wf, 
add-member-int_seg2, 
decidable__le, 
subtract_wf, 
intformle_wf, 
itermSubtract_wf, 
int_formula_prop_le_lemma, 
int_term_value_subtract_lemma, 
reduce2_wf, 
nat_wf, 
decidable__equal_int, 
add-associates, 
add-swap, 
add-commutes, 
zero-add
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
hypothesis, 
functionEquality, 
isectElimination, 
natural_numberEquality, 
addEquality, 
cumulativity, 
hypothesisEquality, 
axiomEquality, 
because_Cache, 
universeEquality, 
applyEquality, 
dependent_set_memberEquality, 
independent_pairFormation, 
lambdaFormation, 
imageMemberEquality, 
baseClosed, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
setElimination, 
rename, 
unionElimination, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
productElimination, 
independent_isectElimination, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
computeAll, 
independent_functionElimination, 
equalityElimination, 
imageElimination, 
functionExtensionality, 
hyp_replacement
Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[L:T  List].  \mforall{}[P:\mBbbN{}||L||  +  1  {}\mrightarrow{}  \mBbbB{}].
    (filter2(P;[x  /  L])
    =  if  P  0  then  [x  /  filter2(\mlambda{}i.(P  (i  +  1));L)]  else  filter2(\mlambda{}i.(P  (i  +  1));L)  fi  )
Date html generated:
2017_10_01-AM-08_35_09
Last ObjectModification:
2017_07_26-PM-04_25_43
Theory : list!
Home
Index