Nuprl Lemma : cons_filter2

[T:Type]. ∀[x:T]. ∀[L:T List]. ∀[P:ℕ||L|| 1 ⟶ 𝔹].
  (filter2(P;[x L]) if then [x filter2(λi.(P (i 1));L)] else filter2(λi.(P (i 1));L) fi  ∈ (T List))


Proof




Definitions occuring in Statement :  filter2: filter2(P;L) length: ||as|| cons: [a b] list: List int_seg: {i..j-} ifthenelse: if then else fi  bool: 𝔹 uall: [x:A]. B[x] apply: a lambda: λx.A[x] function: x:A ⟶ B[x] add: m natural_number: $n universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T filter2: filter2(P;L) all: x:A. B[x] top: Top int_seg: {i..j-} lelt: i ≤ j < k and: P ∧ Q le: A ≤ B less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: nat_plus: + less_than: a < b squash: T true: True guard: {T} decidable: Dec(P) or: P ∨ Q uiff: uiff(P;Q) uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff nat: subtract: m
Lemmas referenced :  reduce2_cons_lemma int_seg_wf length_wf bool_wf list_wf false_wf add_nat_plus length_wf_nat less_than_wf nat_plus_wf nat_plus_properties decidable__lt add-is-int-iff satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermConstant_wf itermVar_wf itermAdd_wf intformeq_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_constant_lemma int_term_value_var_lemma int_term_value_add_lemma int_formula_prop_eq_lemma int_formula_prop_wf equal_wf lelt_wf equal-wf-T-base assert_wf bnot_wf not_wf eqtt_to_assert uiff_transitivity eqff_to_assert assert_of_bnot cons_wf squash_wf true_wf reduce2_shift nil_wf le_wf add-member-int_seg2 decidable__le subtract_wf intformle_wf itermSubtract_wf int_formula_prop_le_lemma int_term_value_subtract_lemma reduce2_wf nat_wf decidable__equal_int add-associates add-swap add-commutes zero-add
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution dependent_functionElimination thin isect_memberEquality voidElimination voidEquality hypothesis functionEquality isectElimination natural_numberEquality addEquality cumulativity hypothesisEquality axiomEquality because_Cache universeEquality applyEquality dependent_set_memberEquality independent_pairFormation lambdaFormation imageMemberEquality baseClosed equalityTransitivity equalitySymmetry applyLambdaEquality setElimination rename unionElimination pointwiseFunctionality promote_hyp baseApply closedConclusion productElimination independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality computeAll independent_functionElimination equalityElimination imageElimination functionExtensionality hyp_replacement

Latex:
\mforall{}[T:Type].  \mforall{}[x:T].  \mforall{}[L:T  List].  \mforall{}[P:\mBbbN{}||L||  +  1  {}\mrightarrow{}  \mBbbB{}].
    (filter2(P;[x  /  L])
    =  if  P  0  then  [x  /  filter2(\mlambda{}i.(P  (i  +  1));L)]  else  filter2(\mlambda{}i.(P  (i  +  1));L)  fi  )



Date html generated: 2017_10_01-AM-08_35_09
Last ObjectModification: 2017_07_26-PM-04_25_43

Theory : list!


Home Index