Nuprl Lemma : member_interleaving
∀[T:Type]. ∀L,L1,L2:T List.  (interleaving(T;L1;L2;L) ⇒ {∀x:T. ((x ∈ L) ⇐⇒ (x ∈ L1) ∨ (x ∈ L2))})
Proof
Definitions occuring in Statement : 
interleaving: interleaving(T;L1;L2;L), 
l_member: (x ∈ l), 
list: T List, 
uall: ∀[x:A]. B[x], 
guard: {T}, 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
implies: P ⇒ Q, 
or: P ∨ Q, 
universe: Type
Definitions unfolded in proof : 
guard: {T}, 
interleaving: interleaving(T;L1;L2;L), 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
rev_implies: P ⇐ Q, 
or: P ∨ Q, 
subtype_rel: A ⊆r B, 
nat: ℕ, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
uimplies: b supposing a, 
exists: ∃x:A. B[x], 
l_member: (x ∈ l), 
cand: A c∧ B, 
finite': finite'(T), 
ge: i ≥ j , 
decidable: Dec(P), 
false: False, 
uiff: uiff(P;Q), 
not: ¬A, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
sq_type: SQType(T), 
squash: ↓T, 
true: True, 
surject: Surj(A;B;f), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
less_than': less_than'(a;b), 
less_than: a < b
Lemmas referenced : 
l_member_wf, 
istype-universe, 
nat_wf, 
length_wf_nat, 
set_subtype_base, 
le_wf, 
istype-int, 
int_subtype_base, 
length_wf, 
disjoint_sublists_wf, 
list_wf, 
disjoint_sublists_witness, 
nsub_finite', 
subtype_base_sq, 
nat_properties, 
decidable__equal_int, 
add-is-int-iff, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
false_wf, 
subtype_rel_self, 
int_seg_wf, 
inject_wf, 
squash_wf, 
true_wf, 
iff_weakening_equal, 
decidable__le, 
intformle_wf, 
itermConstant_wf, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
less_than_wf, 
int_seg_properties, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
lelt_wf, 
or_wf, 
int_seg_subtype_nat, 
istype-false, 
select_wf, 
equal_wf, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
disjoint_sublists_sublist, 
member_sublist
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation_alt, 
lambdaFormation_alt, 
sqequalHypSubstitution, 
productElimination, 
thin, 
independent_pairFormation, 
universeIsType, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
hypothesisEquality, 
hypothesis, 
unionIsType, 
productIsType, 
equalityIsType4, 
applyEquality, 
intEquality, 
lambdaEquality_alt, 
natural_numberEquality, 
independent_isectElimination, 
addEquality, 
because_Cache, 
inhabitedIsType, 
universeEquality, 
dependent_functionElimination, 
independent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
cumulativity, 
setElimination, 
rename, 
applyLambdaEquality, 
unionElimination, 
pointwiseFunctionality, 
promote_hyp, 
baseApply, 
closedConclusion, 
baseClosed, 
approximateComputation, 
dependent_pairFormation_alt, 
int_eqEquality, 
isect_memberEquality_alt, 
voidElimination, 
functionEquality, 
imageElimination, 
functionIsType, 
imageMemberEquality, 
dependent_set_memberEquality_alt, 
hyp_replacement, 
inlFormation_alt, 
equalityIsType1, 
productEquality, 
inrFormation_alt
Latex:
\mforall{}[T:Type].  \mforall{}L,L1,L2:T  List.    (interleaving(T;L1;L2;L)  {}\mRightarrow{}  \{\mforall{}x:T.  ((x  \mmember{}  L)  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  L1)  \mvee{}  (x  \mmember{}  L2))\})
 Date html generated: 
2019_10_15-AM-10_55_21
 Last ObjectModification: 
2018_10_09-AM-10_18_20
Theory : list!
Home
Index