Nuprl Lemma : member_interleaving

[T:Type]. ∀L,L1,L2:T List.  (interleaving(T;L1;L2;L)  {∀x:T. ((x ∈ L) ⇐⇒ (x ∈ L1) ∨ (x ∈ L2))})


Proof




Definitions occuring in Statement :  interleaving: interleaving(T;L1;L2;L) l_member: (x ∈ l) list: List uall: [x:A]. B[x] guard: {T} all: x:A. B[x] iff: ⇐⇒ Q implies:  Q or: P ∨ Q universe: Type
Definitions unfolded in proof :  guard: {T} interleaving: interleaving(T;L1;L2;L) uall: [x:A]. B[x] all: x:A. B[x] implies:  Q and: P ∧ Q iff: ⇐⇒ Q member: t ∈ T prop: rev_implies:  Q or: P ∨ Q subtype_rel: A ⊆B nat: so_lambda: λ2x.t[x] so_apply: x[s] uimplies: supposing a exists: x:A. B[x] l_member: (x ∈ l) cand: c∧ B finite': finite'(T) ge: i ≥  decidable: Dec(P) false: False uiff: uiff(P;Q) not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top sq_type: SQType(T) squash: T true: True surject: Surj(A;B;f) int_seg: {i..j-} lelt: i ≤ j < k le: A ≤ B less_than': less_than'(a;b) less_than: a < b
Lemmas referenced :  l_member_wf istype-universe nat_wf length_wf_nat set_subtype_base le_wf istype-int int_subtype_base length_wf disjoint_sublists_wf list_wf disjoint_sublists_witness nsub_finite' subtype_base_sq nat_properties decidable__equal_int add-is-int-iff full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma istype-void int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf false_wf subtype_rel_self int_seg_wf inject_wf squash_wf true_wf iff_weakening_equal decidable__le intformle_wf itermConstant_wf int_formula_prop_le_lemma int_term_value_constant_lemma less_than_wf int_seg_properties decidable__lt intformless_wf int_formula_prop_less_lemma lelt_wf or_wf int_seg_subtype_nat istype-false select_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma disjoint_sublists_sublist member_sublist
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation_alt lambdaFormation_alt sqequalHypSubstitution productElimination thin independent_pairFormation universeIsType cut introduction extract_by_obid isectElimination hypothesisEquality hypothesis unionIsType productIsType equalityIsType4 applyEquality intEquality lambdaEquality_alt natural_numberEquality independent_isectElimination addEquality because_Cache inhabitedIsType universeEquality dependent_functionElimination independent_functionElimination equalityTransitivity equalitySymmetry instantiate cumulativity setElimination rename applyLambdaEquality unionElimination pointwiseFunctionality promote_hyp baseApply closedConclusion baseClosed approximateComputation dependent_pairFormation_alt int_eqEquality isect_memberEquality_alt voidElimination functionEquality imageElimination functionIsType imageMemberEquality dependent_set_memberEquality_alt hyp_replacement inlFormation_alt equalityIsType1 productEquality inrFormation_alt

Latex:
\mforall{}[T:Type].  \mforall{}L,L1,L2:T  List.    (interleaving(T;L1;L2;L)  {}\mRightarrow{}  \{\mforall{}x:T.  ((x  \mmember{}  L)  \mLeftarrow{}{}\mRightarrow{}  (x  \mmember{}  L1)  \mvee{}  (x  \mmember{}  L2))\})



Date html generated: 2019_10_15-AM-10_55_21
Last ObjectModification: 2018_10_09-AM-10_18_20

Theory : list!


Home Index