Nuprl Lemma : A-loop_wf
∀[Val:Type]. ∀[n:ℕ]. ∀[AType:array{i:l}(Val;n)].
  ∀lo:ℕn. ∀k:ℕ.  (k < n - lo 
⇒ (∀[body:{lo..lo + k-} ⟶ (A-map Unit)]. (A-loop(AType;lo;lo + k;body) ∈ A-map Unit)))
Proof
Definitions occuring in Statement : 
A-loop: A-loop(AType;lo;hi;body)
, 
A-map: A-map
, 
array-model: array-model(AType)
, 
array: array{i:l}(Val;n)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
unit: Unit
, 
member: t ∈ T
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
subtract: n - m
, 
add: n + m
, 
natural_number: $n
, 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
prop: ℙ
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
A-loop: A-loop(AType;lo;hi;body)
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
squash: ↓T
, 
label: ...$L... t
, 
subtract: n - m
, 
sq_type: SQType(T)
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
int_seg_wf, 
A-map_wf, 
unit_wf2, 
less_than_wf, 
subtract_wf, 
nat_wf, 
array_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
decidable__le, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
le_int_wf, 
bool_wf, 
equal-wf-T-base, 
assert_wf, 
le_wf, 
A-null_wf, 
lt_int_wf, 
bnot_wf, 
int_seg_properties, 
itermAdd_wf, 
int_term_value_add_lemma, 
uiff_transitivity, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
assert_functionality_wrt_uiff, 
bnot_of_le_int, 
assert_of_lt_int, 
equal_wf, 
decidable__lt, 
subtype_rel_dep_function, 
int_seg_subtype, 
subtype_rel_self, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
member_wf, 
squash_wf, 
true_wf, 
add-swap, 
add-commutes, 
and_wf, 
subtype_base_sq, 
int_subtype_base, 
iff_weakening_equal, 
lelt_wf, 
A-bind_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
sqequalHypSubstitution, 
hypothesis, 
sqequalRule, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
extract_by_obid, 
isectElimination, 
thin, 
setElimination, 
rename, 
hypothesisEquality, 
addEquality, 
because_Cache, 
applyEquality, 
cumulativity, 
natural_numberEquality, 
lambdaEquality, 
dependent_functionElimination, 
isect_memberEquality, 
universeEquality, 
intWeakElimination, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
independent_functionElimination, 
unionElimination, 
baseClosed, 
productElimination, 
equalityElimination, 
imageElimination, 
minusEquality, 
dependent_set_memberEquality, 
hyp_replacement, 
applyLambdaEquality, 
instantiate, 
imageMemberEquality, 
functionExtensionality
Latex:
\mforall{}[Val:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[AType:array\{i:l\}(Val;n)].
    \mforall{}lo:\mBbbN{}n.  \mforall{}k:\mBbbN{}.
        (k  <  n  -  lo
        {}\mRightarrow{}  (\mforall{}[body:\{lo..lo  +  k\msupminus{}\}  {}\mrightarrow{}  (A-map  Unit)].  (A-loop(AType;lo;lo  +  k;body)  \mmember{}  A-map  Unit)))
Date html generated:
2017_10_01-AM-08_44_13
Last ObjectModification:
2017_07_26-PM-04_30_10
Theory : monads
Home
Index