Nuprl Lemma : array_subtype

[Val1,Val2:Type]. ∀[m,n:ℕ].
  (array{i:l}(Val1;m) ⊆array{i:l}(Val2;n)) supposing ((n ≤ m) and ((Val1 ⊆Val2) ∧ (Val2 ⊆Val1)))


Proof




Definitions occuring in Statement :  array: array{i:l}(Val;n) nat: uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] le: A ≤ B and: P ∧ Q universe: Type
Definitions unfolded in proof :  array: array{i:l}(Val;n) uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a and: P ∧ Q so_lambda: λ2x.t[x] nat: subtype_rel: A ⊆B so_apply: x[s] prop: int_seg: {i..j-} all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff uiff: uiff(P;Q) exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False le: A ≤ B less_than': less_than'(a;b) not: ¬A lelt: i ≤ j < k ge: i ≥  decidable: Dec(P) satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top nequal: a ≠ b ∈  less_than: a < b
Lemmas referenced :  subtype_rel_product int_seg_wf uall_wf equal_wf eq_int_wf bool_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int subtype_rel_dep_function int_seg_subtype false_wf nat_properties decidable__lt satisfiable-full-omega-tt intformand_wf intformnot_wf intformless_wf itermVar_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_le_lemma int_formula_prop_wf lelt_wf int_seg_properties subtype_rel_self le_wf subtype_rel_wf nat_wf equal_subtype equal_functionality_wrt_subtype_rel2 subtype_rel_isect_general subtype_rel_isect-2 eqtt_to_assert assert_of_eq_int
Rules used in proof :  sqequalSubstitution sqequalRule sqequalReflexivity sqequalTransitivity computationStep isect_memberFormation introduction cut sqequalHypSubstitution productElimination thin instantiate extract_by_obid isectElimination universeEquality lambdaEquality productEquality functionEquality natural_numberEquality setElimination rename because_Cache hypothesis applyEquality cumulativity hypothesisEquality functionExtensionality lambdaFormation unionElimination equalityElimination independent_isectElimination equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp dependent_functionElimination independent_functionElimination voidElimination independent_pairFormation dependent_set_memberEquality int_eqEquality intEquality isect_memberEquality voidEquality computeAll axiomEquality isectEquality

Latex:
\mforall{}[Val1,Val2:Type].  \mforall{}[m,n:\mBbbN{}].
    (array\{i:l\}(Val1;m)  \msubseteq{}r  array\{i:l\}(Val2;n))  supposing 
          ((n  \mleq{}  m)  and 
          ((Val1  \msubseteq{}r  Val2)  \mwedge{}  (Val2  \msubseteq{}r  Val1)))



Date html generated: 2017_10_01-AM-08_43_46
Last ObjectModification: 2017_07_26-PM-04_29_56

Theory : monads


Home Index