Nuprl Lemma : approx-root-property
∀k:{2...}. ∀a:{a:ℚ| (0 ≤ a) ∨ (↑isOdd(k))} . ∀n:ℕ+.
  ((0 ≤ a 
⇐⇒ 0 ≤ k-th root(a) within 1/n) ∧ |k-th root(a) within 1/n ↑ k - a| < (1/n))
Proof
Definitions occuring in Statement : 
approx-root: k-th root(q) within 1/err
, 
qexp: r ↑ n
, 
qabs: |r|
, 
qle: r ≤ s
, 
qless: r < s
, 
qsub: r - s
, 
qdiv: (r/s)
, 
rationals: ℚ
, 
isOdd: isOdd(n)
, 
int_upper: {i...}
, 
nat_plus: ℕ+
, 
assert: ↑b
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
or: P ∨ Q
, 
and: P ∧ Q
, 
set: {x:A| B[x]} 
, 
natural_number: $n
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
approx-root: k-th root(q) within 1/err
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uall: ∀[x:A]. B[x]
, 
int_upper: {i...}
, 
or: P ∨ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
implies: P 
⇒ Q
, 
uimplies: b supposing a
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
nat_plus: ℕ+
, 
so_apply: x[s]
, 
int_nzero: ℤ-o
, 
nequal: a ≠ b ∈ T 
, 
guard: {T}
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
top: Top
, 
sq_exists: ∃x:A [B[x]]
, 
sq_stable: SqStable(P)
, 
squash: ↓T
Lemmas referenced : 
qroot-ext, 
subtype_rel_self, 
int_upper_wf, 
all_wf, 
rationals_wf, 
or_wf, 
qle_wf, 
assert_wf, 
isOdd_wf, 
nat_plus_wf, 
sq_exists_wf, 
iff_wf, 
qless_wf, 
qabs_wf, 
qsub_wf, 
qexp_wf, 
upper_subtype_nat, 
qdiv_wf, 
subtype_rel_set, 
less_than_wf, 
int-subtype-rationals, 
int_nzero-rational, 
subtype_rel_sets, 
nequal_wf, 
int_upper_properties, 
full-omega-unsat, 
intformand_wf, 
intformeq_wf, 
itermVar_wf, 
itermConstant_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
equal-wf-base, 
int_subtype_base, 
equal_wf, 
set_wf, 
squash_wf, 
sq_stable__and, 
sq_stable__iff, 
sq_stable_from_decidable, 
decidable__qle, 
decidable__qless, 
qless_witness
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
applyEquality, 
thin, 
instantiate, 
extract_by_obid, 
hypothesis, 
sqequalRule, 
introduction, 
sqequalHypSubstitution, 
isectElimination, 
functionEquality, 
natural_numberEquality, 
setEquality, 
because_Cache, 
hypothesisEquality, 
setElimination, 
rename, 
lambdaEquality, 
productEquality, 
independent_isectElimination, 
independent_pairFormation, 
intEquality, 
productElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
baseClosed, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
imageMemberEquality, 
imageElimination
Latex:
\mforall{}k:\{2...\}.  \mforall{}a:\{a:\mBbbQ{}|  (0  \mleq{}  a)  \mvee{}  (\muparrow{}isOdd(k))\}  .  \mforall{}n:\mBbbN{}\msupplus{}.
    ((0  \mleq{}  a  \mLeftarrow{}{}\mRightarrow{}  0  \mleq{}  k-th  root(a)  within  1/n)  \mwedge{}  |k-th  root(a)  within  1/n  \muparrow{}  k  -  a|  <  (1/n))
Date html generated:
2018_05_22-AM-00_29_01
Last ObjectModification:
2018_05_19-PM-04_09_13
Theory : rationals
Home
Index