Nuprl Lemma : is-half-interval-sub-interval

I,J:ℚInterval.  (rat-sub-interval(I;J)) supposing ((↑is-half-interval(I;J)) and (↑Inhabited(J)))


Proof




Definitions occuring in Statement :  is-half-interval: is-half-interval(I;J) inhabited-rat-interval: Inhabited(I) rat-sub-interval: rat-sub-interval(I;J) rational-interval: Interval assert: b uimplies: supposing a all: x:A. B[x]
Definitions unfolded in proof :  all: x:A. B[x] uimplies: supposing a member: t ∈ T uall: [x:A]. B[x] implies:  Q rational-interval: Interval is-half-interval: is-half-interval(I;J) inhabited-rat-interval: Inhabited(I) rat-sub-interval: rat-sub-interval(I;J) or: P ∨ Q sq_type: SQType(T) guard: {T} uiff: uiff(P;Q) and: P ∧ Q bfalse: ff band: p ∧b q ifthenelse: if then else fi  prop: cand: c∧ B rev_implies:  Q iff: ⇐⇒ Q squash: T true: True subtype_rel: A ⊆B
Lemmas referenced :  assert_witness inhabited-rat-interval_wf is-half-interval_wf istype-assert rational-interval_wf assert_wf bor_wf qeq_wf2 bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert band_wf btrue_wf assert-qeq qavg_wf bfalse_wf equal_wf rationals_wf qle_reflexivity qless_wf iff_weakening_uiff qle_wf qavg-qle-iff-1 qless-qavg-iff-1 squash_wf true_wf subtype_rel_self iff_weakening_equal qle-qavg-iff-1 qavg-qless-iff-1 iff_transitivity assert_of_bor assert_of_band assert-q_le-eq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis independent_functionElimination rename productElimination sqequalRule inhabitedIsType universeIsType dependent_functionElimination unionElimination instantiate cumulativity independent_isectElimination equalityTransitivity equalitySymmetry unionEquality because_Cache productEquality isect_memberEquality_alt productIsType equalityIstype unionIsType independent_pairFormation promote_hyp applyEquality lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed universeEquality inlFormation_alt inrFormation_alt

Latex:
\mforall{}I,J:\mBbbQ{}Interval.    (rat-sub-interval(I;J))  supposing  ((\muparrow{}is-half-interval(I;J))  and  (\muparrow{}Inhabited(J)))



Date html generated: 2020_05_20-AM-09_17_55
Last ObjectModification: 2019_11_14-PM-10_58_51

Theory : rationals


Home Index