Nuprl Lemma : qmax-list-bounds

L:ℚ List
  (0 < ||L||
   (∀x:ℚ
        ((qmax-list(L) ≤ ⇐⇒ (∀y∈L.y ≤ x))
        ∧ (x ≤ qmax-list(L) ⇐⇒ (∃y∈L. x ≤ y))
        ∧ (qmax-list(L) < ⇐⇒ (∀y∈L.y < x))
        ∧ (x < qmax-list(L) ⇐⇒ (∃y∈L. x < y)))))


Proof




Definitions occuring in Statement :  qmax-list: qmax-list(L) qle: r ≤ s qless: r < s rationals: l_exists: (∃x∈L. P[x]) l_all: (∀x∈L.P[x]) length: ||as|| list: List less_than: a < b all: x:A. B[x] iff: ⇐⇒ Q implies:  Q and: P ∧ Q natural_number: $n
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q and: P ∧ Q member: t ∈ T uall: [x:A]. B[x] so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] uimplies: supposing a qmax-list: qmax-list(L) iff: ⇐⇒ Q prop: rev_implies:  Q qmax: qmax(x;y) guard: {T} not: ¬A false: False uiff: uiff(P;Q) or: P ∨ Q sq_type: SQType(T) ifthenelse: if then else fi  btrue: tt bfalse: ff bool: 𝔹 unit: Unit it: cand: c∧ B assoc: Assoc(T;op) infix_ap: y
Lemmas referenced :  rationals_wf istype-less_than length_wf list_wf combine-list-rel-and qmax_wf qle_wf q_le_wf qle_transitivity_qorder assert_wf bnot_wf not_wf istype-assert istype-void qle_complement_qorder bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert-q_le-eq iff_weakening_equal eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot qless_transitivity_2_qorder qle_weakening_lt_qorder uiff_transitivity2 equal-wf-T-base qmax-assoc combine-list-rel-or qless_transitivity_1_qorder qless_wf qless_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt independent_pairFormation universeIsType cut introduction extract_by_obid hypothesis sqequalHypSubstitution isectElimination thin natural_numberEquality hypothesisEquality dependent_functionElimination sqequalRule lambdaEquality_alt inhabitedIsType independent_functionElimination independent_isectElimination productElimination productIsType because_Cache equalityTransitivity equalitySymmetry functionIsType unionElimination instantiate cumulativity equalityElimination baseClosed voidElimination equalityIstype isect_memberFormation_alt isect_memberEquality_alt axiomEquality isectIsTypeImplies unionIsType inrFormation_alt inlFormation_alt

Latex:
\mforall{}L:\mBbbQ{}  List
    (0  <  ||L||
    {}\mRightarrow{}  (\mforall{}x:\mBbbQ{}
                ((qmax-list(L)  \mleq{}  x  \mLeftarrow{}{}\mRightarrow{}  (\mforall{}y\mmember{}L.y  \mleq{}  x))
                \mwedge{}  (x  \mleq{}  qmax-list(L)  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}y\mmember{}L.  x  \mleq{}  y))
                \mwedge{}  (qmax-list(L)  <  x  \mLeftarrow{}{}\mRightarrow{}  (\mforall{}y\mmember{}L.y  <  x))
                \mwedge{}  (x  <  qmax-list(L)  \mLeftarrow{}{}\mRightarrow{}  (\mexists{}y\mmember{}L.  x  <  y)))))



Date html generated: 2020_05_20-AM-09_16_12
Last ObjectModification: 2020_01_10-PM-04_21_30

Theory : rationals


Home Index