Nuprl Lemma : simple-cbva-seq-list
∀F:Top. ∀L1,L2:ℤ ⟶ Base. ∀m:ℕ.  ((∀j:ℕm + 1. (L1 j ~ L2 j)) 
⇒ (simple-cbva-seq(L1;F;m) ~ simple-cbva-seq(L2;F;m)))
Proof
Definitions occuring in Statement : 
simple-cbva-seq: simple-cbva-seq(L;F;m)
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
top: Top
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
add: n + m
, 
natural_number: $n
, 
int: ℤ
, 
base: Base
, 
sqequal: s ~ t
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
simple-cbva-seq: simple-cbva-seq(L;F;m)
, 
cbva-seq: cbva-seq(L;F;m)
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
sq_type: SQType(T)
, 
guard: {T}
, 
callbyvalueall-seq: callbyvalueall-seq(L;G;F;n;m)
, 
le_int: i ≤z j
, 
lt_int: i <z j
, 
bnot: ¬bb
, 
bfalse: ff
, 
exists: ∃x:A. B[x]
, 
or: P ∨ Q
, 
assert: ↑b
, 
false: False
, 
not: ¬A
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
prop: ℙ
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
subtype_rel: A ⊆r B
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
int_upper: {i...}
, 
decidable: Dec(P)
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
Lemmas referenced : 
eq_int_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
subtype_base_sq, 
int_subtype_base, 
btrue_wf, 
assert_of_le_int, 
eqff_to_assert, 
le_int_wf, 
bool_cases_sqequal, 
bool_wf, 
bool_subtype_base, 
assert-bnot, 
iff_weakening_uiff, 
assert_wf, 
le_wf, 
nat_properties, 
full-omega-unsat, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
istype-int, 
int_formula_prop_not_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
set_subtype_base, 
neg_assert_of_eq_int, 
upper_subtype_nat, 
istype-false, 
nequal-le-implies, 
zero-add, 
int_upper_properties, 
decidable__le, 
intformand_wf, 
itermVar_wf, 
intformeq_wf, 
int_formula_prop_and_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
subtract_wf, 
itermSubtract_wf, 
int_term_value_subtract_lemma, 
decidable__equal_int, 
itermAdd_wf, 
int_term_value_add_lemma, 
intformless_wf, 
int_formula_prop_less_lemma, 
ge_wf, 
istype-less_than, 
int_seg_wf, 
istype-sqequal, 
subtract-1-ge-0, 
decidable__lt, 
subtype_rel_self, 
nat_wf, 
istype-base, 
istype-top
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
natural_numberEquality, 
inhabitedIsType, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
independent_isectElimination, 
sqequalRule, 
instantiate, 
cumulativity, 
intEquality, 
dependent_functionElimination, 
independent_functionElimination, 
dependent_pairFormation_alt, 
equalityIsType2, 
hypothesisEquality, 
baseClosed, 
promote_hyp, 
voidElimination, 
universeIsType, 
approximateComputation, 
lambdaEquality_alt, 
isect_memberEquality_alt, 
equalityIsType1, 
baseApply, 
closedConclusion, 
applyEquality, 
hypothesis_subsumption, 
independent_pairFormation, 
dependent_set_memberEquality_alt, 
applyLambdaEquality, 
int_eqEquality, 
equalityIsType4, 
intWeakElimination, 
axiomSqEquality, 
functionIsTypeImplies, 
addEquality, 
functionIsType, 
productIsType
Latex:
\mforall{}F:Top.  \mforall{}L1,L2:\mBbbZ{}  {}\mrightarrow{}  Base.  \mforall{}m:\mBbbN{}.
    ((\mforall{}j:\mBbbN{}m  +  1.  (L1  j  \msim{}  L2  j))  {}\mRightarrow{}  (simple-cbva-seq(L1;F;m)  \msim{}  simple-cbva-seq(L2;F;m)))
Date html generated:
2019_10_15-AM-10_59_03
Last ObjectModification:
2018_10_17-AM-11_53_39
Theory : untyped!computation
Home
Index