Nuprl Lemma : simple-cbva-seq-list

F:Top. ∀L1,L2:ℤ ⟶ Base. ∀m:ℕ.  ((∀j:ℕ1. (L1 L2 j))  (simple-cbva-seq(L1;F;m) simple-cbva-seq(L2;F;m)))


Proof




Definitions occuring in Statement :  simple-cbva-seq: simple-cbva-seq(L;F;m) int_seg: {i..j-} nat: top: Top all: x:A. B[x] implies:  Q apply: a function: x:A ⟶ B[x] add: m natural_number: $n int: base: Base sqequal: t
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q simple-cbva-seq: simple-cbva-seq(L;F;m) cbva-seq: cbva-seq(L;F;m) member: t ∈ T uall: [x:A]. B[x] nat: bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a ifthenelse: if then else fi  sq_type: SQType(T) guard: {T} callbyvalueall-seq: callbyvalueall-seq(L;G;F;n;m) le_int: i ≤j lt_int: i <j bnot: ¬bb bfalse: ff exists: x:A. B[x] or: P ∨ Q assert: b false: False not: ¬A rev_implies:  Q iff: ⇐⇒ Q prop: ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top subtype_rel: A ⊆B so_lambda: λ2x.t[x] so_apply: x[s] le: A ≤ B less_than': less_than'(a;b) int_upper: {i...} decidable: Dec(P) int_seg: {i..j-} lelt: i ≤ j < k
Lemmas referenced :  eq_int_wf eqtt_to_assert assert_of_eq_int subtype_base_sq int_subtype_base btrue_wf assert_of_le_int eqff_to_assert le_int_wf bool_cases_sqequal bool_wf bool_subtype_base assert-bnot iff_weakening_uiff assert_wf le_wf nat_properties full-omega-unsat intformnot_wf intformle_wf itermConstant_wf istype-int int_formula_prop_not_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_formula_prop_wf set_subtype_base neg_assert_of_eq_int upper_subtype_nat istype-false nequal-le-implies zero-add int_upper_properties decidable__le intformand_wf itermVar_wf intformeq_wf int_formula_prop_and_lemma int_term_value_var_lemma int_formula_prop_eq_lemma subtract_wf itermSubtract_wf int_term_value_subtract_lemma decidable__equal_int itermAdd_wf int_term_value_add_lemma intformless_wf int_formula_prop_less_lemma ge_wf istype-less_than int_seg_wf istype-sqequal subtract-1-ge-0 decidable__lt subtype_rel_self nat_wf istype-base istype-top
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename because_Cache hypothesis natural_numberEquality inhabitedIsType unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination sqequalRule instantiate cumulativity intEquality dependent_functionElimination independent_functionElimination dependent_pairFormation_alt equalityIsType2 hypothesisEquality baseClosed promote_hyp voidElimination universeIsType approximateComputation lambdaEquality_alt isect_memberEquality_alt equalityIsType1 baseApply closedConclusion applyEquality hypothesis_subsumption independent_pairFormation dependent_set_memberEquality_alt applyLambdaEquality int_eqEquality equalityIsType4 intWeakElimination axiomSqEquality functionIsTypeImplies addEquality functionIsType productIsType

Latex:
\mforall{}F:Top.  \mforall{}L1,L2:\mBbbZ{}  {}\mrightarrow{}  Base.  \mforall{}m:\mBbbN{}.
    ((\mforall{}j:\mBbbN{}m  +  1.  (L1  j  \msim{}  L2  j))  {}\mRightarrow{}  (simple-cbva-seq(L1;F;m)  \msim{}  simple-cbva-seq(L2;F;m)))



Date html generated: 2019_10_15-AM-10_59_03
Last ObjectModification: 2018_10_17-AM-11_53_39

Theory : untyped!computation


Home Index