Nuprl Lemma : lookup_oal_cons

a:LOSet. ∀b:OCMon. ∀k,kp:|a|. ∀vp:|b|. ∀ps:|oal(a;b)|.
  ((↑before(kp;map(λz.(fst(z));ps)))  (([<kp, vp> ps][k]) ((when kp (=bk. vp) (ps[k])) ∈ |b|))


Proof




Definitions occuring in Statement :  lookup: as[k] oalist: oal(a;b) before: before(u;ps) map: map(f;as) cons: [a b] assert: b infix_ap: y pi1: fst(t) all: x:A. B[x] implies:  Q lambda: λx.A[x] pair: <a, b> equal: t ∈ T mon_when: when b. p ocmon: OCMon grp_id: e grp_op: * grp_car: |g| loset: LOSet set_eq: =b set_car: |p|
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T prop: uall: [x:A]. B[x] loset: LOSet poset: POSet{i} qoset: QOSet subtype_rel: A ⊆B guard: {T} uimplies: supposing a dset: DSet set_prod: s × t mk_dset: mk_dset(T, eq) set_car: |p| pi1: fst(t) oalist: oal(a;b) dset_set: dset_set dset_list: List dset_of_mon: g↓set ocmon: OCMon abmonoid: AbMon mon: Mon mon_when: when b. p top: Top infix_ap: y bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  bfalse: ff iff: ⇐⇒ Q not: ¬A rev_implies:  Q false: False squash: T true: True
Lemmas referenced :  assert_wf before_wf map_wf set_car_wf set_prod_wf dset_of_mon_wf abdmonoid_dmon ocmon_subtype_abdmonoid subtype_rel_transitivity ocmon_wf abdmonoid_wf dmon_wf oalist_wf dset_wf grp_car_wf loset_wf lookup_cons_pr_lemma set_eq_wf bool_wf uiff_transitivity equal-wf-T-base equal_wf eqtt_to_assert assert_of_dset_eq iff_transitivity bnot_wf not_wf iff_weakening_uiff eqff_to_assert assert_of_bnot squash_wf true_wf grp_op_wf lookup_wf list_wf poset_sig_wf grp_id_wf iff_weakening_equal lookup_before_start mon_ident iabmonoid_subtype_imon abmonoid_subtype_iabmonoid abdmonoid_abmonoid abmonoid_wf iabmonoid_wf imon_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut hypothesis introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_functionElimination setElimination rename because_Cache hypothesisEquality applyEquality instantiate independent_isectElimination sqequalRule lambdaEquality productElimination isect_memberEquality voidElimination voidEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry baseClosed independent_functionElimination independent_pairFormation impliesFunctionality imageElimination universeEquality productEquality cumulativity natural_numberEquality imageMemberEquality

Latex:
\mforall{}a:LOSet.  \mforall{}b:OCMon.  \mforall{}k,kp:|a|.  \mforall{}vp:|b|.  \mforall{}ps:|oal(a;b)|.
    ((\muparrow{}before(kp;map(\mlambda{}z.(fst(z));ps)))  {}\mRightarrow{}  (([<kp,  vp>  /  ps][k])  =  ((when  kp  (=\msubb{})  k.  vp)  *  (ps[k]))))



Date html generated: 2017_10_01-AM-10_02_15
Last ObjectModification: 2017_03_03-PM-01_04_35

Theory : polynom_2


Home Index