Nuprl Lemma : lookup_oal_cons
∀a:LOSet. ∀b:OCMon. ∀k,kp:|a|. ∀vp:|b|. ∀ps:|oal(a;b)|.
  ((↑before(kp;map(λz.(fst(z));ps))) ⇒ (([<kp, vp> / ps][k]) = ((when kp (=b) k. vp) * (ps[k])) ∈ |b|))
Proof
Definitions occuring in Statement : 
lookup: as[k], 
oalist: oal(a;b), 
before: before(u;ps), 
map: map(f;as), 
cons: [a / b], 
assert: ↑b, 
infix_ap: x f y, 
pi1: fst(t), 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
lambda: λx.A[x], 
pair: <a, b>, 
equal: s = t ∈ T, 
mon_when: when b. p, 
ocmon: OCMon, 
grp_id: e, 
grp_op: *, 
grp_car: |g|, 
loset: LOSet, 
set_eq: =b, 
set_car: |p|
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
loset: LOSet, 
poset: POSet{i}, 
qoset: QOSet, 
subtype_rel: A ⊆r B, 
guard: {T}, 
uimplies: b supposing a, 
dset: DSet, 
set_prod: s × t, 
mk_dset: mk_dset(T, eq), 
set_car: |p|, 
pi1: fst(t), 
oalist: oal(a;b), 
dset_set: dset_set, 
dset_list: s List, 
dset_of_mon: g↓set, 
ocmon: OCMon, 
abmonoid: AbMon, 
mon: Mon, 
mon_when: when b. p, 
top: Top, 
infix_ap: x f y, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
uiff: uiff(P;Q), 
and: P ∧ Q, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
iff: P ⇐⇒ Q, 
not: ¬A, 
rev_implies: P ⇐ Q, 
false: False, 
squash: ↓T, 
true: True
Lemmas referenced : 
assert_wf, 
before_wf, 
map_wf, 
set_car_wf, 
set_prod_wf, 
dset_of_mon_wf, 
abdmonoid_dmon, 
ocmon_subtype_abdmonoid, 
subtype_rel_transitivity, 
ocmon_wf, 
abdmonoid_wf, 
dmon_wf, 
oalist_wf, 
dset_wf, 
grp_car_wf, 
loset_wf, 
lookup_cons_pr_lemma, 
set_eq_wf, 
bool_wf, 
uiff_transitivity, 
equal-wf-T-base, 
equal_wf, 
eqtt_to_assert, 
assert_of_dset_eq, 
iff_transitivity, 
bnot_wf, 
not_wf, 
iff_weakening_uiff, 
eqff_to_assert, 
assert_of_bnot, 
squash_wf, 
true_wf, 
grp_op_wf, 
lookup_wf, 
list_wf, 
poset_sig_wf, 
grp_id_wf, 
iff_weakening_equal, 
lookup_before_start, 
mon_ident, 
iabmonoid_subtype_imon, 
abmonoid_subtype_iabmonoid, 
abdmonoid_abmonoid, 
abmonoid_wf, 
iabmonoid_wf, 
imon_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
hypothesis, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
setElimination, 
rename, 
because_Cache, 
hypothesisEquality, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
lambdaEquality, 
productElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
baseClosed, 
independent_functionElimination, 
independent_pairFormation, 
impliesFunctionality, 
imageElimination, 
universeEquality, 
productEquality, 
cumulativity, 
natural_numberEquality, 
imageMemberEquality
Latex:
\mforall{}a:LOSet.  \mforall{}b:OCMon.  \mforall{}k,kp:|a|.  \mforall{}vp:|b|.  \mforall{}ps:|oal(a;b)|.
    ((\muparrow{}before(kp;map(\mlambda{}z.(fst(z));ps)))  {}\mRightarrow{}  (([<kp,  vp>  /  ps][k])  =  ((when  kp  (=\msubb{})  k.  vp)  *  (ps[k]))))
Date html generated:
2017_10_01-AM-10_02_15
Last ObjectModification:
2017_03_03-PM-01_04_35
Theory : polynom_2
Home
Index