Nuprl Lemma : es-interface-pair-prior-programmable

[Info,A,B:Type]. ∀[X:EClass(A)]. ∀[Y:EClass(B)].
  X;Y
  eclass-compose2(λys,xs. if (#(ys) =z 1)
                           then if (#(xs) =z 1) then {<only(xs), only(ys)>else {} fi 
                           else {}
                           fi ;Y;Prior(X))
  ∈ EClass(A × B) 
  supposing Singlevalued(X)


Proof




Definitions occuring in Statement :  es-interface-pair-prior: X;Y primed-class: Prior(X) eclass-compose2: eclass-compose2(f;X;Y) sv-class: Singlevalued(X) eclass: EClass(A[eo; e]) ifthenelse: if then else fi  eq_int: (i =z j) uimplies: supposing a uall: [x:A]. B[x] lambda: λx.A[x] pair: <a, b> product: x:A × B[x] natural_number: $n universe: Type equal: t ∈ T bag-only: only(bs) bag-size: #(bs) single-bag: {x} empty-bag: {}
Lemmas :  bag-size-one equal_wf bag-only_wf2 single-valued-bag-if-le1 le_weakening decidable__lt bag-size_wf nat_wf false_wf le_antisymmetry_iff add_functionality_wrt_le add-commutes zero-add le-add-cancel bag-member-single bag-member_wf single-bag_wf add-zero in-eclass_wf es-interface-subtype_rel2 es-E_wf event-ordering+_subtype event-ordering+_wf top_wf bool_wf eqtt_to_assert bag_size_single_lemma assert_functionality_wrt_uiff primed-class-prior-val true_wf uiff_transitivity equal-wf-T-base assert_wf bnot_wf not_wf eqff_to_assert assert_of_bnot bag_size_empty_lemma es-prior-val_wf is-pair-prior es-interface-pair-prior_wf subtype_top iff_wf eclass-compose2_wf eq_int_wf assert_of_eq_int bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int empty-bag_wf bag_wf primed-class_wf bag_only_single_lemma eclass-val_wf squash_wf eclass_wf event-ordering+_cumulative2 iff_weakening_equal

Latex:
\mforall{}[Info,A,B:Type].  \mforall{}[X:EClass(A)].  \mforall{}[Y:EClass(B)].
    X;Y
    =  eclass-compose2(\mlambda{}ys,xs.  if  (\#(ys)  =\msubz{}  1)
                                                      then  if  (\#(xs)  =\msubz{}  1)  then  \{<only(xs),  only(ys)>\}  else  \{\}  fi 
                                                      else  \{\}
                                                      fi  ;Y;Prior(X)) 
    supposing  Singlevalued(X)



Date html generated: 2015_07_21-PM-03_48_05
Last ObjectModification: 2015_02_04-PM-06_12_49

Home Index