Nuprl Lemma : prior-val-induction
∀[Info,T:Type].
  ∀es:EO+(Info). ∀X:EClass(T).
    ∀[P:T ─→ ℙ]
      ((∀e:E(X). (P[X(e)] supposing ¬↑e ∈b (X)' ∧ P[(X)'(e)] 
⇒ P[X(e)] supposing ↑e ∈b (X)')) 
⇒ (∀e:E(X). P[X(e)]))
Proof
Definitions occuring in Statement : 
es-prior-val: (X)'
, 
es-E-interface: E(X)
, 
eclass-val: X(e)
, 
in-eclass: e ∈b X
, 
eclass: EClass(A[eo; e])
, 
event-ordering+: EO+(Info)
, 
assert: ↑b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
decidable__assert, 
in-eclass_wf, 
es-interface-subtype_rel2, 
es-E_wf, 
event-ordering+_subtype, 
event-ordering+_wf, 
top_wf, 
es-causl-swellfnd, 
less_than_transitivity1, 
less_than_irreflexivity, 
int_seg_wf, 
decidable__equal_int, 
subtype_rel-int_seg, 
false_wf, 
le_weakening, 
subtract_wf, 
int_seg_properties, 
le_wf, 
nat_wf, 
zero-le-nat, 
lelt_wf, 
es-causl_wf, 
assert_wf, 
equal_wf, 
all_wf, 
int_seg_subtype-nat, 
eclass-val_wf, 
decidable__lt, 
not-equal-2, 
condition-implies-le, 
minus-add, 
minus-minus, 
minus-one-mul, 
add-swap, 
add-commutes, 
add-associates, 
add_functionality_wrt_le, 
zero-add, 
le-add-cancel-alt, 
less-iff-le, 
le-add-cancel, 
set_wf, 
less_than_wf, 
primrec-wf2, 
decidable__le, 
not-le-2, 
sq_stable__le, 
add-zero, 
add-mul-special, 
zero-mul, 
es-prior-val_wf, 
prior-val-val, 
assert_elim, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base
Latex:
\mforall{}[Info,T:Type].
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(T).
        \mforall{}[P:T  {}\mrightarrow{}  \mBbbP{}]
            ((\mforall{}e:E(X).  (P[X(e)]  supposing  \mneg{}\muparrow{}e  \mmember{}\msubb{}  (X)'  \mwedge{}  P[(X)'(e)]  {}\mRightarrow{}  P[X(e)]  supposing  \muparrow{}e  \mmember{}\msubb{}  (X)'))
            {}\mRightarrow{}  (\mforall{}e:E(X).  P[X(e)]))
Date html generated:
2015_07_21-PM-03_23_39
Last ObjectModification:
2015_07_16-AM-10_05_33
Home
Index