Nuprl Lemma : prior-val-induction2

[Info,T:Type].
  ∀es:EO+(Info). ∀X:EClass(T).
    ∀[P:Id ─→ T ─→ ℙ]
      ((∀e:E(X). (P[loc(e);X(e)] supposing ¬↑e ∈b (X)' ∧ P[loc(e);(X)'(e)]  P[loc(e);X(e)] supposing ↑e ∈b (X)'))
       (∀e:E(X). P[loc(e);X(e)]))


Proof




Definitions occuring in Statement :  es-prior-val: (X)' es-E-interface: E(X) eclass-val: X(e) in-eclass: e ∈b X eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-loc: loc(e) Id: Id assert: b uimplies: supposing a uall: [x:A]. B[x] prop: so_apply: x[s1;s2] all: x:A. B[x] not: ¬A implies:  Q and: P ∧ Q function: x:A ─→ B[x] universe: Type
Lemmas :  es-E-interface_wf es-interface-subtype_rel2 es-E_wf event-ordering+_subtype event-ordering+_wf top_wf all_wf not_wf assert_wf in-eclass_wf es-prior-val_wf es-loc_wf eclass-val_wf assert_elim subtype_base_sq bool_wf bool_subtype_base Id_wf eclass_wf decidable__assert es-causl-swellfnd less_than_transitivity1 less_than_irreflexivity int_seg_wf decidable__equal_int subtype_rel-int_seg false_wf le_weakening subtract_wf int_seg_properties le_wf nat_wf zero-le-nat lelt_wf es-causl_wf equal_wf int_seg_subtype-nat decidable__lt not-equal-2 condition-implies-le minus-add minus-minus minus-one-mul add-swap add-commutes add-associates add_functionality_wrt_le zero-add le-add-cancel-alt less-iff-le le-add-cancel set_wf less_than_wf primrec-wf2 decidable__le not-le-2 sq_stable__le add-zero add-mul-special zero-mul prior-val-val atom2_subtype_base

Latex:
\mforall{}[Info,T:Type].
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(T).
        \mforall{}[P:Id  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}]
            ((\mforall{}e:E(X)
                    (P[loc(e);X(e)]  supposing  \mneg{}\muparrow{}e  \mmember{}\msubb{}  (X)'
                    \mwedge{}  P[loc(e);(X)'(e)]  {}\mRightarrow{}  P[loc(e);X(e)]  supposing  \muparrow{}e  \mmember{}\msubb{}  (X)'))
            {}\mRightarrow{}  (\mforall{}e:E(X).  P[loc(e);X(e)]))



Date html generated: 2015_07_21-PM-03_23_53
Last ObjectModification: 2015_07_16-AM-10_05_07

Home Index