Nuprl Lemma : sys-antecedent-closure

[Info:Type]
  ∀es:EO+(Info). ∀X:EClass(Top). ∀fs:sys-antecedent(es;X) List. ∀s:fset(E(X)).  ∃c:fset(E(X)). (c fs closure of s)


Proof




Definitions occuring in Statement :  sys-antecedent: sys-antecedent(es;Sys) es-E-interface: E(X) eclass: EClass(A[eo; e]) event-ordering+: EO+(Info) es-eq: es-eq(es) fset-closure: (c fs closure of s) fset: fset(T) list: List uall: [x:A]. B[x] top: Top all: x:A. B[x] exists: x:A. B[x] universe: Type
Lemmas :  l_all_iff sys-antecedent_wf l_member_wf all_wf es-E-interface_wf not_wf equal_wf less_than_wf nat_wf nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf equal-wf-T-base colength_wf_list list-cases product_subtype_list spread_cons_lemma sq_stable__le le_antisymmetry_iff add_functionality_wrt_le add-associates add-zero zero-add le-add-cancel decidable__le false_wf not-le-2 condition-implies-le minus-add minus-one-mul add-commutes le_wf subtract_wf not-ge-2 less-iff-le minus-minus add-swap subtype_base_sq set_subtype_base int_subtype_base list_wf eclass_wf top_wf es-E_wf event-ordering+_subtype event-ordering+_wf nil_wf cons_wf set_wf es-causle_wf and_wf in-eclass_wf assert_elim bool_wf bool_subtype_base assert_wf
\mforall{}[Info:Type]
    \mforall{}es:EO+(Info).  \mforall{}X:EClass(Top).  \mforall{}fs:sys-antecedent(es;X)  List.  \mforall{}s:fset(E(X)).
        \mexists{}c:fset(E(X)).  (c  =  fs  closure  of  s)



Date html generated: 2015_07_17-PM-00_55_25
Last ObjectModification: 2015_01_27-PM-10_50_44

Home Index