Nuprl Lemma : es-pred-cle
∀es:EO. ∀e:es-base-E(es).  ((pred(e) < e) ∨ (pred(e) = e ∈ es-base-E(es)))
Proof
Definitions occuring in Statement : 
es-pred: pred(e)
, 
es-causl: (e < e')
, 
es-base-E: es-base-E(es)
, 
event_ordering: EO
, 
all: ∀x:A. B[x]
, 
or: P ∨ Q
, 
equal: s = t ∈ T
Lemmas : 
es-causl-wf-base, 
es-eq-E-wf-base, 
es-pred-wf-base, 
es-causl-swellfnd-base, 
less_than_transitivity1, 
less_than_irreflexivity, 
int_seg_wf, 
decidable__equal_int, 
subtype_rel-int_seg, 
false_wf, 
le_weakening, 
subtract_wf, 
int_seg_properties, 
le_wf, 
nat_wf, 
zero-le-nat, 
lelt_wf, 
equal_wf, 
es-base-E_wf, 
all_wf, 
int_seg_subtype-nat, 
or_wf, 
decidable__lt, 
not-equal-2, 
condition-implies-le, 
minus-add, 
minus-minus, 
minus-one-mul, 
add-swap, 
add-commutes, 
add-associates, 
add_functionality_wrt_le, 
zero-add, 
le-add-cancel-alt, 
less-iff-le, 
le-add-cancel, 
set_wf, 
less_than_wf, 
primrec-wf2, 
decidable__le, 
not-le-2, 
sq_stable__le, 
add-zero, 
add-mul-special, 
zero-mul, 
event_ordering_wf, 
es-base-pred-le, 
es-dom_wf, 
es-base-pred_wf, 
bool_wf, 
eqtt_to_assert, 
eqff_to_assert, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
es-causl_transitivity, 
assert-es-eq-E-base
\mforall{}es:EO.  \mforall{}e:es-base-E(es).    ((pred(e)  <  e)  \mvee{}  (pred(e)  =  e))
Date html generated:
2015_07_17-AM-08_35_32
Last ObjectModification:
2015_01_27-PM-02_59_39
Home
Index