Nuprl Lemma : es-pred-maximal-base

es:EO. ∀e:es-base-E(es). ∀e':E.  ((loc(e') loc(e) ∈ Id)  (e' < e)  (pred(e) < e')  False)


Proof




Definitions occuring in Statement :  es-pred: pred(e) es-causl: (e < e') es-loc: loc(e) es-E: E es-base-E: es-base-E(es) event_ordering: EO Id: Id all: x:A. B[x] implies:  Q false: False equal: t ∈ T
Lemmas :  event_ordering_wf es-loc-wf-base es-causl-wf-base es-eq-wf-base es-pred-wf-base es-causl-swellfnd-base nat_properties less_than_transitivity1 less_than_irreflexivity ge_wf less_than_wf es-E_wf Id_wf es-base-E_wf int_seg_wf int_seg_subtype-nat decidable__le subtract_wf false_wf not-ge-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel decidable__equal_int subtype_rel-int_seg le_weakening int_seg_properties le_wf nat_wf zero-le-nat lelt_wf equal_wf decidable__lt not-equal-2 le-add-cancel-alt not-le-2 sq_stable__le add-mul-special zero-mul es-dom_wf es-base-pred_wf bool_wf eqtt_to_assert eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot es-base-pred-properties es-eq-E-wf-base es-causl_transitivity es-causal-antireflexive es-causl-total-base assert_wf sq_stable__assert
\mforall{}es:EO.  \mforall{}e:es-base-E(es).  \mforall{}e':E.    ((loc(e')  =  loc(e))  {}\mRightarrow{}  (e'  <  e)  {}\mRightarrow{}  (pred(e)  <  e')  {}\mRightarrow{}  False)



Date html generated: 2015_07_17-AM-08_35_19
Last ObjectModification: 2015_01_27-PM-03_00_41

Home Index