Nuprl Lemma : is-dag-remove
∀[T:Type]. ∀[g:LabeledGraph(T)]. ∀[x:ℕlg-size(g)].  is-dag(lg-remove(g;x)) supposing is-dag(g)
Proof
Definitions occuring in Statement : 
is-dag: is-dag(g)
, 
lg-remove: lg-remove(g;n)
, 
lg-size: lg-size(g)
, 
labeled-graph: LabeledGraph(T)
, 
int_seg: {i..j-}
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
universe: Type
Lemmas : 
lg-size-remove, 
lg-edge-remove, 
less_than_transitivity1, 
le_weakening, 
lelt_wf, 
lt_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_lt_int, 
decidable__lt, 
false_wf, 
less-iff-le, 
le_antisymmetry_iff, 
condition-implies-le, 
add-associates, 
minus-one-mul, 
add-commutes, 
add-swap, 
add_functionality_wrt_le, 
le-add-cancel2, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
less_than_wf, 
decidable__le, 
not-le-2, 
sq_stable__le, 
minus-add, 
zero-add, 
add-zero, 
le-add-cancel, 
lg-size_wf, 
lg-remove_wf, 
le_wf, 
lg-edge_wf, 
int_seg_subtype-nat, 
int_seg_wf, 
member-less_than, 
nat_wf, 
is-dag_wf, 
labeled-graph_wf, 
assert_wf, 
bnot_wf, 
not_wf, 
bool_cases, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot
Latex:
\mforall{}[T:Type].  \mforall{}[g:LabeledGraph(T)].  \mforall{}[x:\mBbbN{}lg-size(g)].    is-dag(lg-remove(g;x))  supposing  is-dag(g)
Date html generated:
2015_07_22-PM-00_29_50
Last ObjectModification:
2015_01_28-PM-11_35_51
Home
Index