Nuprl Lemma : l_tree-induction
∀[L,T:Type]. ∀[P:l_tree(L;T) ─→ ℙ].
  ((∀val:L. P[l_tree_leaf(val)])
  
⇒ (∀val:T. ∀left_subtree,right_subtree:l_tree(L;T).
        (P[left_subtree] 
⇒ P[right_subtree] 
⇒ P[l_tree_node(val;left_subtree;right_subtree)]))
  
⇒ {∀v:l_tree(L;T). P[v]})
Proof
Definitions occuring in Statement : 
l_tree_node: l_tree_node(val;left_subtree;right_subtree)
, 
l_tree_leaf: l_tree_leaf(val)
, 
l_tree: l_tree(L;T)
, 
uall: ∀[x:A]. B[x]
, 
prop: ℙ
, 
guard: {T}
, 
so_apply: x[s]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
function: x:A ─→ B[x]
, 
universe: Type
Lemmas : 
uniform-comp-nat-induction, 
all_wf, 
l_tree_wf, 
isect_wf, 
le_wf, 
l_tree_size_wf, 
nat_wf, 
less_than_wf, 
l_tree-ext, 
eq_atom_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_atom, 
subtype_base_sq, 
atom_subtype_base, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_atom, 
subtract_wf, 
decidable__le, 
false_wf, 
not-le-2, 
less-iff-le, 
condition-implies-le, 
minus-one-mul, 
zero-add, 
minus-add, 
minus-minus, 
add-associates, 
add-swap, 
add-commutes, 
add_functionality_wrt_le, 
add-zero, 
le-add-cancel, 
subtract-is-less, 
lelt_wf, 
uall_wf, 
int_seg_wf, 
le_weakening, 
l_tree_node_wf, 
l_tree_leaf_wf
\mforall{}[L,T:Type].  \mforall{}[P:l\_tree(L;T)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}val:L.  P[l\_tree\_leaf(val)])
    {}\mRightarrow{}  (\mforall{}val:T.  \mforall{}left$_{subtree}$,right$_{subtree}$:l\_tree(L;T\000C).
                (P[left$_{subtree}$]  {}\mRightarrow{}  P[right$_{subtree}$]  {}\mRightarrow{}  P[l\_\000Ctree\_node(val;left$_{subtree}$;right$_{subtree}$)]))
    {}\mRightarrow{}  \{\mforall{}v:l\_tree(L;T).  P[v]\})
Date html generated:
2015_07_17-AM-07_41_39
Last ObjectModification:
2015_01_27-AM-09_31_15
Home
Index