Nuprl Lemma : l_tree-induction

[L,T:Type]. ∀[P:l_tree(L;T) ─→ ℙ].
  ((∀val:L. P[l_tree_leaf(val)])
   (∀val:T. ∀left_subtree,right_subtree:l_tree(L;T).
        (P[left_subtree]  P[right_subtree]  P[l_tree_node(val;left_subtree;right_subtree)]))
   {∀v:l_tree(L;T). P[v]})


Proof




Definitions occuring in Statement :  l_tree_node: l_tree_node(val;left_subtree;right_subtree) l_tree_leaf: l_tree_leaf(val) l_tree: l_tree(L;T) uall: [x:A]. B[x] prop: guard: {T} so_apply: x[s] all: x:A. B[x] implies:  Q function: x:A ─→ B[x] universe: Type
Lemmas :  uniform-comp-nat-induction all_wf l_tree_wf isect_wf le_wf l_tree_size_wf nat_wf less_than_wf l_tree-ext eq_atom_wf bool_wf eqtt_to_assert assert_of_eq_atom subtype_base_sq atom_subtype_base eqff_to_assert equal_wf bool_cases_sqequal bool_subtype_base assert-bnot neg_assert_of_eq_atom subtract_wf decidable__le false_wf not-le-2 less-iff-le condition-implies-le minus-one-mul zero-add minus-add minus-minus add-associates add-swap add-commutes add_functionality_wrt_le add-zero le-add-cancel subtract-is-less lelt_wf uall_wf int_seg_wf le_weakening l_tree_node_wf l_tree_leaf_wf
\mforall{}[L,T:Type].  \mforall{}[P:l\_tree(L;T)  {}\mrightarrow{}  \mBbbP{}].
    ((\mforall{}val:L.  P[l\_tree\_leaf(val)])
    {}\mRightarrow{}  (\mforall{}val:T.  \mforall{}left$_{subtree}$,right$_{subtree}$:l\_tree(L;T\000C).
                (P[left$_{subtree}$]  {}\mRightarrow{}  P[right$_{subtree}$]  {}\mRightarrow{}  P[l\_\000Ctree\_node(val;left$_{subtree}$;right$_{subtree}$)]))
    {}\mRightarrow{}  \{\mforall{}v:l\_tree(L;T).  P[v]\})



Date html generated: 2015_07_17-AM-07_41_39
Last ObjectModification: 2015_01_27-AM-09_31_15

Home Index