Nuprl Lemma : groupoid-nerve-functor-flip

[G:Groupoid]. ∀[I:Cname List]. ∀[u:nameset(I)]. ∀[K:Cname List]. ∀[f:name-morph(I;K)]. ∀[f1:name-morph(K;[])].
  ∀x1:nameset(I)
    ∀[F:Functor(poset-cat(I-[x1]);cat(G))]
      (F (f f1) flip((f f1);u) x.Ax))
      (f(F) f1 flip(f1;f u) x.Ax))
      ∈ (cat-arrow(cat(G)) (F (f f1)) (F (f flip(f1;f u)))) 
      supposing (↑isname(f u)) ∧ ((f1 (f u)) 0 ∈ ℕ2)


Proof




Definitions occuring in Statement :  cubical-nerve: cubical-nerve(X) poset-cat: poset-cat(J) cube-set-restriction: f(s) name-morph-flip: flip(f;y) name-comp: (f g) name-morph: name-morph(I;J) isname: isname(z) nameset: nameset(L) cname_deq: CnameDeq coordinate_name: Cname groupoid-cat: cat(G) groupoid: Groupoid functor-arrow: arrow(F) functor-ob: ob(F) cat-functor: Functor(C1;C2) cat-arrow: cat-arrow(C) list-diff: as-bs cons: [a b] nil: [] list: List int_seg: {i..j-} assert: b uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] and: P ∧ Q apply: a lambda: λx.A[x] natural_number: $n equal: t ∈ T axiom: Ax
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] uimplies: supposing a member: t ∈ T nameset: nameset(L) and: P ∧ Q name-morph: name-morph(I;J) uiff: uiff(P;Q) cubical-nerve: cubical-nerve(X) cube-set-restriction: f(s) pi2: snd(t) poset-functor: poset-functor(J;K;f) functor-comp: functor-comp(F;G) functor-arrow: arrow(F) functor-ob: ob(F) top: Top squash: T prop: subtype_rel: A ⊆B true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q implies:  Q so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] so_lambda: λ2x.t[x] so_apply: x[s] poset-cat: poset-cat(J) cat-ob: cat-ob(C) pi1: fst(t) name-comp: (f g) compose: g uext: uext(g) ifthenelse: if then else fi  btrue: tt int_seg: {i..j-} coordinate_name: Cname int_upper: {i...} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False
Lemmas referenced :  cat-functor_wf poset-cat_wf list-diff_wf coordinate_name_wf cname_deq_wf cons_wf nil_wf groupoid-cat_wf name-morph_wf nameset_wf list_wf groupoid_wf assert-isname ob_pair_lemma istype-void arrow_pair_lemma name-morph-ext name-comp_wf name-morph-flip_wf equal_wf squash_wf true_wf istype-universe extd-nameset_wf name-comp-flip subtype_rel_self iff_weakening_equal arrow_mk_functor_lemma functor-arrow_wf name-morph_subtype nameset_subtype list-diff-subset member-poset-cat-arrow poset-cat-arrow-flip cat-ob_wf isname-name int_seg_properties decidable__equal_int full-omega-unsat intformand_wf intformnot_wf intformeq_wf itermVar_wf itermConstant_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_wf poset-cat-arrow_subtype subtype_rel_wf cat-arrow_wf istype-assert isname_wf int_seg_wf extd-nameset-nil
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt lambdaFormation_alt universeIsType cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis hypothesisEquality setElimination rename because_Cache productElimination applyEquality independent_isectElimination sqequalRule dependent_functionElimination isect_memberEquality_alt voidElimination equalitySymmetry lambdaEquality_alt imageElimination equalityTransitivity inhabitedIsType instantiate universeEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination applyLambdaEquality unionElimination approximateComputation dependent_pairFormation_alt int_eqEquality independent_pairFormation hyp_replacement productIsType equalityIsType3

Latex:
\mforall{}[G:Groupoid].  \mforall{}[I:Cname  List].  \mforall{}[u:nameset(I)].  \mforall{}[K:Cname  List].  \mforall{}[f:name-morph(I;K)].
\mforall{}[f1:name-morph(K;[])].
    \mforall{}x1:nameset(I)
        \mforall{}[F:Functor(poset-cat(I-[x1]);cat(G))]
            (F  (f  o  f1)  flip((f  o  f1);u)  (\mlambda{}x.Ax))  =  (f(F)  f1  flip(f1;f  u)  (\mlambda{}x.Ax)) 
            supposing  (\muparrow{}isname(f  u))  \mwedge{}  ((f1  (f  u))  =  0)



Date html generated: 2019_11_05-PM-00_39_25
Last ObjectModification: 2018_11_10-PM-03_22_44

Theory : cubical!sets


Home Index