Nuprl Lemma : filling-uniformity_wf

[Gamma:j⊢]. ∀[A:{Gamma ⊢ _}]. ∀[fill:I:fset(ℕ)
                                      ⟶ i:{i:ℕ| ¬i ∈ I} 
                                      ⟶ rho:Gamma(I+i)
                                      ⟶ phi:𝔽(I)
                                      ⟶ u:{I+i,s(phi) ⊢ _:(A)<rho> iota}
                                      ⟶ cubical-path-0(Gamma;A;I;i;rho;phi;u)
                                      ⟶ A(rho)].
  (filling-uniformity(Gamma;A;fill) ∈ ℙ{[i' j']})


Proof




Definitions occuring in Statement :  filling-uniformity: filling-uniformity(Gamma;A;fill) cubical-path-0: cubical-path-0(Gamma;A;I;i;rho;phi;u) cubical-term: {X ⊢ _:A} csm-ap-type: (AF)s cubical-type-at: A(a) cubical-type: {X ⊢ _} subset-iota: iota cubical-subset: I,psi face-presheaf: 𝔽 csm-comp: F context-map: <rho> formal-cube: formal-cube(I) cube-set-restriction: f(s) I_cube: A(I) cubical_set: CubicalSet nc-s: s add-name: I+i fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] prop: not: ¬A member: t ∈ T set: {x:A| B[x]}  function: x:A ⟶ B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T filling-uniformity: filling-uniformity(Gamma;A;fill) so_lambda: λ2x.t[x] subtype_rel: A ⊆B prop: nat: ge: i ≥  all: x:A. B[x] decidable: Dec(P) or: P ∨ Q uimplies: supposing a not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q squash: T true: True guard: {T} iff: ⇐⇒ Q rev_implies:  Q so_apply: x[s]
Lemmas referenced :  all_wf fset_wf nat_wf not_wf fset-member_wf int-deq_wf names-hom_wf I_cube_wf add-name_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le face-presheaf_wf2 cubical-term_wf cubical-subset_wf cube-set-restriction_wf nc-s_wf f-subset-add-name csm-ap-type_wf cubical_set_cumulativity-i-j csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf cubical-path-0_wf cubical-type-cumulativity2 equal_wf squash_wf true_wf istype-universe fl-morph-restriction nc-e'_wf subtype_rel_self iff_weakening_equal nc-e'-lemma3 nh-comp_wf cube-set-restriction-comp cubical-subset-term-trans cubical-type-cumulativity istype-void istype-nat strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self istype-cubical-type-at cubical-type_wf cubical_set_wf cubical-type-at_wf cubical-type-ap-morph_wf cubical-path-0-ap-morph
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesis sqequalRule lambdaEquality_alt because_Cache setEquality applyEquality hypothesisEquality dependent_set_memberEquality_alt setElimination rename dependent_functionElimination natural_numberEquality unionElimination independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation universeIsType voidElimination universeEquality imageElimination equalityTransitivity equalitySymmetry imageMemberEquality baseClosed productElimination inhabitedIsType setIsType functionIsType axiomEquality intEquality isect_memberEquality_alt isectIsTypeImplies

Latex:
\mforall{}[Gamma:j\mvdash{}].  \mforall{}[A:\{Gamma  \mvdash{}  \_\}].  \mforall{}[fill:I:fset(\mBbbN{})
                                                                            {}\mrightarrow{}  i:\{i:\mBbbN{}|  \mneg{}i  \mmember{}  I\} 
                                                                            {}\mrightarrow{}  rho:Gamma(I+i)
                                                                            {}\mrightarrow{}  phi:\mBbbF{}(I)
                                                                            {}\mrightarrow{}  u:\{I+i,s(phi)  \mvdash{}  \_:(A)<rho>  o  iota\}
                                                                            {}\mrightarrow{}  cubical-path-0(Gamma;A;I;i;rho;phi;u)
                                                                            {}\mrightarrow{}  A(rho)].
    (filling-uniformity(Gamma;A;fill)  \mmember{}  \mBbbP{}\{[i'  |  j']\})



Date html generated: 2020_05_20-PM-03_52_49
Last ObjectModification: 2020_04_09-PM-01_41_03

Theory : cubical!type!theory


Home Index