Nuprl Lemma : nc-e-comp-e'

[I,K:fset(ℕ)]. ∀[f:K ⟶ I]. ∀[z,z1,v:ℕ].  f,z=v e(z;z1) ⋅ f,z1=v ∈ K+v ⟶ I+z supposing ¬z1 ∈ I


Proof




Definitions occuring in Statement :  nc-e': g,i=j nc-e: e(i;j) add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J fset-member: a ∈ s fset: fset(T) nat-deq: NatDeq nat: uimplies: supposing a uall: [x:A]. B[x] not: ¬A equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a names-hom: I ⟶ J nh-comp: g ⋅ f dma-lift-compose: dma-lift-compose(I;J;eqi;eqj;f;g) compose: g dM: dM(I) dM-lift: dM-lift(I;J;f) nc-e: e(i;j) names: names(I) nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt uiff: uiff(P;Q) and: P ∧ Q ifthenelse: if then else fi  squash: T prop: subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] guard: {T} so_apply: x[s] true: True iff: ⇐⇒ Q rev_implies:  Q nc-e': g,i=j bfalse: ff exists: x:A. B[x] or: P ∨ Q sq_type: SQType(T) bnot: ¬bb assert: b false: False nequal: a ≠ b ∈  ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A top: Top sq_stable: SqStable(P) nat-deq: NatDeq int-deq: IntDeq
Lemmas referenced :  eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int equal_wf squash_wf true_wf lattice-point_wf dM_wf add-name_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf nc-e'_wf names-hom_wf dM-lift-inc trivial-member-add-name1 fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self iff_weakening_equal dM_inc_wf eqff_to_assert bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int nat_properties satisfiable-full-omega-tt intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf intformand_wf int_formula_prop_and_lemma not-added-name names-subtype f-subset-add-name names_wf not_wf nat-deq_wf fset_wf int_subtype_base sq_stable__fset-member
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut functionExtensionality sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin setElimination rename hypothesisEquality hypothesis lambdaFormation unionElimination equalityElimination equalityTransitivity equalitySymmetry productElimination independent_isectElimination applyEquality lambdaEquality imageElimination universeEquality instantiate productEquality cumulativity because_Cache dependent_functionElimination dependent_set_memberEquality intEquality natural_numberEquality imageMemberEquality baseClosed independent_functionElimination dependent_pairFormation promote_hyp voidElimination int_eqEquality isect_memberEquality voidEquality computeAll independent_pairFormation axiomEquality

Latex:
\mforall{}[I,K:fset(\mBbbN{})].  \mforall{}[f:K  {}\mrightarrow{}  I].  \mforall{}[z,z1,v:\mBbbN{}].    f,z=v  =  e(z;z1)  \mcdot{}  f,z1=v  supposing  \mneg{}z1  \mmember{}  I



Date html generated: 2017_10_05-AM-01_04_29
Last ObjectModification: 2017_07_28-AM-09_27_02

Theory : cubical!type!theory


Home Index