Nuprl Lemma : nc-e-comp-nc-p

[I:fset(ℕ)]. ∀[i,j:{j:ℕ| ¬j ∈ I} ]. ∀[z:Point(dM(I))].  (e(i;j) ⋅ (j/z) (i/z) ∈ I ⟶ I+i)


Proof




Definitions occuring in Statement :  nc-e: e(i;j) nc-p: (i/z) add-name: I+i nh-comp: g ⋅ f names-hom: I ⟶ J dM: dM(I) lattice-point: Point(l) fset-member: a ∈ s fset: fset(T) int-deq: IntDeq nat: uall: [x:A]. B[x] not: ¬A set: {x:A| B[x]}  equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T top: Top nc-p: (i/z) nc-e: e(i;j) compose: g names-hom: I ⟶ J names: names(I) nat: all: x:A. B[x] implies:  Q bool: 𝔹 unit: Unit it: btrue: tt ifthenelse: if then else fi  bfalse: ff uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a exists: x:A. B[x] prop: or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b false: False subtype_rel: A ⊆B DeMorgan-algebra: DeMorganAlgebra so_lambda: λ2x.t[x] so_apply: x[s] squash: T true: True iff: ⇐⇒ Q rev_implies:  Q nequal: a ≠ b ∈  ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) not: ¬A
Lemmas referenced :  nh-comp-sq eq_int_wf bool_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int dM_inc_wf not-added-name names_wf add-name_wf lattice-point_wf dM_wf subtype_rel_set DeMorgan-algebra-structure_wf lattice-structure_wf lattice-axioms_wf bounded-lattice-structure-subtype DeMorgan-algebra-structure-subtype subtype_rel_transitivity bounded-lattice-structure_wf bounded-lattice-axioms_wf uall_wf lattice-meet_wf lattice-join_wf DeMorgan-algebra-axioms_wf set_wf nat_wf not_wf fset-member_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self fset_wf eqtt_to_assert assert_of_eq_int int_subtype_base dM-lift-inc trivial-member-add-name1 iff_weakening_equal nat_properties satisfiable-full-omega-tt intformnot_wf intformeq_wf itermVar_wf int_formula_prop_not_lemma int_formula_prop_eq_lemma int_term_value_var_lemma int_formula_prop_wf names-subtype f-subset-add-name
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule extract_by_obid sqequalHypSubstitution isectElimination thin isect_memberEquality voidElimination voidEquality hypothesis functionExtensionality lambdaEquality setElimination rename because_Cache lambdaFormation unionElimination equalityElimination hypothesisEquality productElimination independent_isectElimination equalityTransitivity equalitySymmetry dependent_pairFormation promote_hyp dependent_functionElimination instantiate cumulativity independent_functionElimination applyEquality productEquality universeEquality axiomEquality intEquality natural_numberEquality imageElimination dependent_set_memberEquality imageMemberEquality baseClosed int_eqEquality computeAll applyLambdaEquality

Latex:
\mforall{}[I:fset(\mBbbN{})].  \mforall{}[i,j:\{j:\mBbbN{}|  \mneg{}j  \mmember{}  I\}  ].  \mforall{}[z:Point(dM(I))].    (e(i;j)  \mcdot{}  (j/z)  =  (i/z))



Date html generated: 2017_10_05-AM-01_04_40
Last ObjectModification: 2017_07_28-AM-09_27_07

Theory : cubical!type!theory


Home Index