Nuprl Lemma : universe-comp-op-encode
∀[X:j⊢]. ∀[T:{X ⊢ _}]. ∀[cT:X ⊢ CompOp(T)].  (compOp(encode(T;cT)) = cT ∈ X ⊢ CompOp(T))
Proof
Definitions occuring in Statement : 
universe-comp-op: compOp(t)
, 
universe-encode: encode(T;cT)
, 
composition-op: Gamma ⊢ CompOp(A)
, 
cubical-type: {X ⊢ _}
, 
cubical_set: CubicalSet
, 
uall: ∀[x:A]. B[x]
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
squash: ↓T
, 
true: True
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
and: P ∧ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
universe-encode: encode(T;cT)
, 
universe-comp-op: compOp(t)
, 
context-map: <rho>
, 
csm-composition: (comp)sigma
, 
cubical-term-at: u(a)
, 
pi2: snd(t)
, 
functor-arrow: arrow(F)
, 
csm-ap: (s)x
, 
cube-set-restriction: f(s)
, 
composition-op: Gamma ⊢ CompOp(A)
, 
guard: {T}
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u)
Lemmas referenced : 
universe-encode_wf, 
equal-composition-op2, 
universe-comp-op_wf, 
subtype_rel-equal, 
composition-op_wf, 
cubical_set_cumulativity-i-j, 
universe-decode_wf, 
cubical-type-cumulativity2, 
universe-decode-encode, 
cubical-path-0_wf, 
istype-cubical-term, 
cubical-subset_wf, 
add-name_wf, 
cube-set-restriction_wf, 
face-presheaf_wf2, 
nc-s_wf, 
f-subset-add-name, 
csm-ap-type_wf, 
csm-comp_wf, 
formal-cube_wf1, 
subset-iota_wf, 
context-map_wf, 
I_cube_wf, 
nat_properties, 
decidable__le, 
full-omega-unsat, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
istype-int, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
istype-le, 
istype-nat, 
fset-member_wf, 
nat_wf, 
int-deq_wf, 
strong-subtype-deq-subtype, 
strong-subtype-set3, 
le_wf, 
strong-subtype-self, 
istype-void, 
fset_wf, 
cubical-type_wf, 
cubical_set_wf, 
nh-id_wf, 
subset-cubical-term2, 
sub_cubical_set_self, 
equal_wf, 
cube-set-restriction-id, 
iff_weakening_equal, 
subtype_rel_set, 
cubical-type-at_wf, 
nc-1_wf, 
cubical-path-condition'_wf, 
istype-cubical-type-at, 
squash_wf, 
true_wf, 
istype-universe, 
names-hom_wf, 
subtype_rel_self
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
instantiate, 
sqequalRule, 
because_Cache, 
independent_isectElimination, 
lambdaEquality_alt, 
imageElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
lambdaFormation_alt, 
universeIsType, 
setElimination, 
rename, 
dependent_functionElimination, 
dependent_set_memberEquality_alt, 
unionElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
int_eqEquality, 
Error :memTop, 
independent_pairFormation, 
voidElimination, 
setIsType, 
functionIsType, 
intEquality, 
equalityTransitivity, 
equalitySymmetry, 
productElimination, 
cumulativity, 
universeEquality, 
inhabitedIsType
Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T:\{X  \mvdash{}  \_\}].  \mforall{}[cT:X  \mvdash{}  CompOp(T)].    (compOp(encode(T;cT))  =  cT)
Date html generated:
2020_05_20-PM-07_17_34
Last ObjectModification:
2020_04_25-PM-09_43_38
Theory : cubical!type!theory
Home
Index