Nuprl Lemma : universe-comp-op-encode

[X:j⊢]. ∀[T:{X ⊢ _}]. ∀[cT:X ⊢ CompOp(T)].  (compOp(encode(T;cT)) cT ∈ X ⊢ CompOp(T))


Proof




Definitions occuring in Statement :  universe-comp-op: compOp(t) universe-encode: encode(T;cT) composition-op: Gamma ⊢ CompOp(A) cubical-type: {X ⊢ _} cubical_set: CubicalSet uall: [x:A]. B[x] equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B uimplies: supposing a squash: T true: True all: x:A. B[x] nat: ge: i ≥  decidable: Dec(P) or: P ∨ Q not: ¬A implies:  Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False and: P ∧ Q prop: so_lambda: λ2x.t[x] so_apply: x[s] universe-encode: encode(T;cT) universe-comp-op: compOp(t) context-map: <rho> csm-composition: (comp)sigma cubical-term-at: u(a) pi2: snd(t) functor-arrow: arrow(F) csm-ap: (s)x cube-set-restriction: f(s) composition-op: Gamma ⊢ CompOp(A) guard: {T} iff: ⇐⇒ Q rev_implies:  Q cubical-path-1: cubical-path-1(Gamma;A;I;i;rho;phi;u)
Lemmas referenced :  universe-encode_wf equal-composition-op2 universe-comp-op_wf subtype_rel-equal composition-op_wf cubical_set_cumulativity-i-j universe-decode_wf cubical-type-cumulativity2 universe-decode-encode cubical-path-0_wf istype-cubical-term cubical-subset_wf add-name_wf cube-set-restriction_wf face-presheaf_wf2 nc-s_wf f-subset-add-name csm-ap-type_wf csm-comp_wf formal-cube_wf1 subset-iota_wf context-map_wf I_cube_wf nat_properties decidable__le full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf istype-le istype-nat fset-member_wf nat_wf int-deq_wf strong-subtype-deq-subtype strong-subtype-set3 le_wf strong-subtype-self istype-void fset_wf cubical-type_wf cubical_set_wf nh-id_wf subset-cubical-term2 sub_cubical_set_self equal_wf cube-set-restriction-id iff_weakening_equal subtype_rel_set cubical-type-at_wf nc-1_wf cubical-path-condition'_wf istype-cubical-type-at squash_wf true_wf istype-universe names-hom_wf subtype_rel_self
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis applyEquality instantiate sqequalRule because_Cache independent_isectElimination lambdaEquality_alt imageElimination natural_numberEquality imageMemberEquality baseClosed lambdaFormation_alt universeIsType setElimination rename dependent_functionElimination dependent_set_memberEquality_alt unionElimination approximateComputation independent_functionElimination dependent_pairFormation_alt int_eqEquality Error :memTop,  independent_pairFormation voidElimination setIsType functionIsType intEquality equalityTransitivity equalitySymmetry productElimination cumulativity universeEquality inhabitedIsType

Latex:
\mforall{}[X:j\mvdash{}].  \mforall{}[T:\{X  \mvdash{}  \_\}].  \mforall{}[cT:X  \mvdash{}  CompOp(T)].    (compOp(encode(T;cT))  =  cT)



Date html generated: 2020_05_20-PM-07_17_34
Last ObjectModification: 2020_04_25-PM-09_43_38

Theory : cubical!type!theory


Home Index