Nuprl Lemma : Prop22-symmetric-point-construction-lemma
∀e:EuclideanPlane. ∀a,b,c:Point.
  (a # bc
  
⇒ (∃c1,c1',c1'',c2,c2',c2'':Point
       ((ac1 ≅ ac ∧ out(a bc1))
       ∧ (bc2 ≅ bc ∧ out(b ac2))
       ∧ (b-a-c1' ∧ ac1' ≅ ac1)
       ∧ (a-b-c2' ∧ bc2' ≅ bc2)
       ∧ (a_b_c1'' ∧ bc1'' ≅ bc1)
       ∧ (b_a_c2'' ∧ ac2'' ≅ ac2)
       ∧ (a-c1-c2' ∧ b-c2-c1')
       ∧ (c1'-a-c1 ∧ c2'-b-c2)
       ∧ (c1'-c2-c2' ∧ c2'-c1-c1')
       ∧ c1'-c2-c1
       ∧ c2'-c1-c2)))
Proof
Definitions occuring in Statement : 
geo-out: out(p ab)
, 
euclidean-plane: EuclideanPlane
, 
geo-lsep: a # bc
, 
geo-strict-between: a-b-c
, 
geo-congruent: ab ≅ cd
, 
geo-between: a_b_c
, 
geo-point: Point
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
implies: P 
⇒ Q
, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
and: P ∧ Q
, 
euclidean-plane: EuclideanPlane
, 
guard: {T}
, 
exists: ∃x:A. B[x]
, 
uall: ∀[x:A]. B[x]
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
prop: ℙ
, 
basic-geometry: BasicGeometry
, 
squash: ↓T
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
basic-geometry-: BasicGeometry-
, 
uiff: uiff(P;Q)
, 
geo-out: out(p ab)
, 
geo-strict-between: a-b-c
Lemmas referenced : 
Euclid-Prop20_cycle, 
geo-proper-extend-exists, 
geo-O_wf, 
geo-X_wf, 
geo-sep-sym, 
lsep-implies-sep, 
geo-sep-O-X, 
geo-lsep_wf, 
euclidean-plane-structure-subtype, 
euclidean-plane-subtype, 
subtype_rel_transitivity, 
euclidean-plane_wf, 
euclidean-plane-structure_wf, 
geo-primitives_wf, 
geo-point_wf, 
geo-lt_wf, 
squash_wf, 
true_wf, 
geo-length-type_wf, 
basic-geometry_wf, 
geo-length-flip, 
geo-add-length_wf, 
geo-length_wf, 
geo-mk-seg_wf, 
subtype_rel_self, 
iff_weakening_equal, 
geo-add-length_functionality_wrt_cong, 
geo-add-length-comm, 
geo-strict-between-sep3, 
geo-triangle-inequality-lt-sep, 
extend-using-SC, 
geo-out_wf, 
geo-between_wf, 
geo-congruent_wf, 
geo-strict-between_wf, 
geo-out-iff-between1, 
geo-between-symmetry, 
geo-strict-between-implies-between, 
geo-between-outer-trans, 
geo-congruent-iff-length, 
geo-add-length-between, 
equal_wf, 
istype-universe, 
geo-lt-out-to-between, 
geo-strict-between-sep1, 
extended-out-preserves-between, 
geo-between-exchange4, 
geo-out_inversion, 
geo-between-implies-out2, 
geo-strict-between-sym, 
geo-length_wf1, 
geo-add-length_wf1, 
geo-zero-point-sep-iff-sep, 
geo-lt-sep, 
geo-length-equality, 
geo-lt-add1-iff, 
geo-between-inner-trans, 
geo-between-out, 
geo-strict-between-sep2, 
euclidean-plane-axioms, 
geo-out_transitivity, 
geo-lt-add1-iff2, 
geo-add-length-assoc
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation_alt, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
independent_functionElimination, 
hypothesis, 
productElimination, 
because_Cache, 
setElimination, 
rename, 
universeIsType, 
isectElimination, 
applyEquality, 
instantiate, 
independent_isectElimination, 
sqequalRule, 
inhabitedIsType, 
lambdaEquality_alt, 
imageElimination, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
universeEquality, 
independent_pairFormation, 
dependent_pairFormation_alt, 
productIsType, 
dependent_set_memberEquality_alt, 
equalityIstype, 
applyLambdaEquality, 
hyp_replacement
Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.
    (a  \#  bc
    {}\mRightarrow{}  (\mexists{}c1,c1',c1'',c2,c2',c2'':Point
              ((ac1  \mcong{}  ac  \mwedge{}  out(a  bc1))
              \mwedge{}  (bc2  \mcong{}  bc  \mwedge{}  out(b  ac2))
              \mwedge{}  (b-a-c1'  \mwedge{}  ac1'  \mcong{}  ac1)
              \mwedge{}  (a-b-c2'  \mwedge{}  bc2'  \mcong{}  bc2)
              \mwedge{}  (a\_b\_c1''  \mwedge{}  bc1''  \mcong{}  bc1)
              \mwedge{}  (b\_a\_c2''  \mwedge{}  ac2''  \mcong{}  ac2)
              \mwedge{}  (a-c1-c2'  \mwedge{}  b-c2-c1')
              \mwedge{}  (c1'-a-c1  \mwedge{}  c2'-b-c2)
              \mwedge{}  (c1'-c2-c2'  \mwedge{}  c2'-c1-c1')
              \mwedge{}  c1'-c2-c1
              \mwedge{}  c2'-c1-c2)))
Date html generated:
2019_10_16-PM-02_22_25
Last ObjectModification:
2019_03_06-AM-11_30_17
Theory : euclidean!plane!geometry
Home
Index