Nuprl Lemma : Prop22-symmetric-point-construction-lemma

e:EuclideanPlane. ∀a,b,c:Point.
  (a bc
   (∃c1,c1',c1'',c2,c2',c2'':Point
       ((ac1 ≅ ac ∧ out(a bc1))
       ∧ (bc2 ≅ bc ∧ out(b ac2))
       ∧ (b-a-c1' ∧ ac1' ≅ ac1)
       ∧ (a-b-c2' ∧ bc2' ≅ bc2)
       ∧ (a_b_c1'' ∧ bc1'' ≅ bc1)
       ∧ (b_a_c2'' ∧ ac2'' ≅ ac2)
       ∧ (a-c1-c2' ∧ b-c2-c1')
       ∧ (c1'-a-c1 ∧ c2'-b-c2)
       ∧ (c1'-c2-c2' ∧ c2'-c1-c1')
       ∧ c1'-c2-c1
       ∧ c2'-c1-c2)))


Proof




Definitions occuring in Statement :  geo-out: out(p ab) euclidean-plane: EuclideanPlane geo-lsep: bc geo-strict-between: a-b-c geo-congruent: ab ≅ cd geo-between: a_b_c geo-point: Point all: x:A. B[x] exists: x:A. B[x] implies:  Q and: P ∧ Q
Definitions unfolded in proof :  all: x:A. B[x] implies:  Q member: t ∈ T and: P ∧ Q euclidean-plane: EuclideanPlane guard: {T} exists: x:A. B[x] uall: [x:A]. B[x] subtype_rel: A ⊆B uimplies: supposing a prop: basic-geometry: BasicGeometry squash: T true: True iff: ⇐⇒ Q rev_implies:  Q cand: c∧ B basic-geometry-: BasicGeometry- uiff: uiff(P;Q) geo-out: out(p ab) geo-strict-between: a-b-c
Lemmas referenced :  Euclid-Prop20_cycle geo-proper-extend-exists geo-O_wf geo-X_wf geo-sep-sym lsep-implies-sep geo-sep-O-X geo-lsep_wf euclidean-plane-structure-subtype euclidean-plane-subtype subtype_rel_transitivity euclidean-plane_wf euclidean-plane-structure_wf geo-primitives_wf geo-point_wf geo-lt_wf squash_wf true_wf geo-length-type_wf basic-geometry_wf geo-length-flip geo-add-length_wf geo-length_wf geo-mk-seg_wf subtype_rel_self iff_weakening_equal geo-add-length_functionality_wrt_cong geo-add-length-comm geo-strict-between-sep3 geo-triangle-inequality-lt-sep extend-using-SC geo-out_wf geo-between_wf geo-congruent_wf geo-strict-between_wf geo-out-iff-between1 geo-between-symmetry geo-strict-between-implies-between geo-between-outer-trans geo-congruent-iff-length geo-add-length-between equal_wf istype-universe geo-lt-out-to-between geo-strict-between-sep1 extended-out-preserves-between geo-between-exchange4 geo-out_inversion geo-between-implies-out2 geo-strict-between-sym geo-length_wf1 geo-add-length_wf1 geo-zero-point-sep-iff-sep geo-lt-sep geo-length-equality geo-lt-add1-iff geo-between-inner-trans geo-between-out geo-strict-between-sep2 euclidean-plane-axioms geo-out_transitivity geo-lt-add1-iff2 geo-add-length-assoc
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation_alt cut introduction extract_by_obid sqequalHypSubstitution dependent_functionElimination thin hypothesisEquality independent_functionElimination hypothesis productElimination because_Cache setElimination rename universeIsType isectElimination applyEquality instantiate independent_isectElimination sqequalRule inhabitedIsType lambdaEquality_alt imageElimination equalityTransitivity equalitySymmetry natural_numberEquality imageMemberEquality baseClosed universeEquality independent_pairFormation dependent_pairFormation_alt productIsType dependent_set_memberEquality_alt equalityIstype applyLambdaEquality hyp_replacement

Latex:
\mforall{}e:EuclideanPlane.  \mforall{}a,b,c:Point.
    (a  \#  bc
    {}\mRightarrow{}  (\mexists{}c1,c1',c1'',c2,c2',c2'':Point
              ((ac1  \mcong{}  ac  \mwedge{}  out(a  bc1))
              \mwedge{}  (bc2  \mcong{}  bc  \mwedge{}  out(b  ac2))
              \mwedge{}  (b-a-c1'  \mwedge{}  ac1'  \mcong{}  ac1)
              \mwedge{}  (a-b-c2'  \mwedge{}  bc2'  \mcong{}  bc2)
              \mwedge{}  (a\_b\_c1''  \mwedge{}  bc1''  \mcong{}  bc1)
              \mwedge{}  (b\_a\_c2''  \mwedge{}  ac2''  \mcong{}  ac2)
              \mwedge{}  (a-c1-c2'  \mwedge{}  b-c2-c1')
              \mwedge{}  (c1'-a-c1  \mwedge{}  c2'-b-c2)
              \mwedge{}  (c1'-c2-c2'  \mwedge{}  c2'-c1-c1')
              \mwedge{}  c1'-c2-c1
              \mwedge{}  c2'-c1-c2)))



Date html generated: 2019_10_16-PM-02_22_25
Last ObjectModification: 2019_03_06-AM-11_30_17

Theory : euclidean!plane!geometry


Home Index