Nuprl Lemma : hyptrans_functionality
∀[rv:InnerProductSpace]. ∀[e1,x1:Point]. ∀[t1:ℝ]. ∀[e2,x2:Point]. ∀[t2:ℝ].
  (hyptrans(rv;e1;t1;x1) ≡ hyptrans(rv;e2;t2;x2)) supposing (x1 ≡ x2 and e1 ≡ e2 and (t1 = t2))
Proof
Definitions occuring in Statement : 
hyptrans: hyptrans(rv;e;t;x)
, 
inner-product-space: InnerProductSpace
, 
req: x = y
, 
real: ℝ
, 
ss-eq: x ≡ y
, 
ss-point: Point
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
hyptrans: hyptrans(rv;e;t;x)
, 
ss-eq: x ≡ y
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
subtype_rel: A ⊆r B
, 
guard: {T}
, 
prop: ℙ
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
rev_implies: P 
⇐ Q
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
ss-sep_wf, 
real-vector-space_subtype1, 
inner-product-space_subtype, 
subtype_rel_transitivity, 
inner-product-space_wf, 
real-vector-space_wf, 
separation-space_wf, 
hyptrans_wf, 
ss-eq_wf, 
req_wf, 
real_wf, 
ss-point_wf, 
rv-add_wf, 
rv-mul_wf, 
radd_wf, 
rmul_wf, 
rv-ip_wf, 
rsub_wf, 
cosh_wf, 
int-to-real_wf, 
rsqrt_wf, 
radd-non-neg, 
rleq-int, 
false_wf, 
rv-ip-nonneg, 
rleq_wf, 
sinh_wf, 
ss-eq_weakening, 
ss-eq_functionality, 
rv-add_functionality, 
rv-mul_functionality, 
radd_functionality, 
rmul_functionality, 
rsqrt_functionality, 
rv-ip_functionality, 
req_weakening, 
sinh_functionality, 
rsub_functionality, 
cosh_functionality
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
because_Cache, 
extract_by_obid, 
isectElimination, 
applyEquality, 
hypothesis, 
instantiate, 
independent_isectElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
voidElimination, 
natural_numberEquality, 
independent_functionElimination, 
productElimination, 
independent_pairFormation, 
lambdaFormation, 
dependent_set_memberEquality, 
setElimination, 
rename, 
setEquality, 
productEquality
Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[e1,x1:Point].  \mforall{}[t1:\mBbbR{}].  \mforall{}[e2,x2:Point].  \mforall{}[t2:\mBbbR{}].
    (hyptrans(rv;e1;t1;x1)  \mequiv{}  hyptrans(rv;e2;t2;x2))  supposing  (x1  \mequiv{}  x2  and  e1  \mequiv{}  e2  and  (t1  =  t2))
Date html generated:
2017_10_05-AM-00_27_23
Last ObjectModification:
2017_06_21-PM-01_02_44
Theory : inner!product!spaces
Home
Index