Nuprl Lemma : hyptrans_functionality

[rv:InnerProductSpace]. ∀[e1,x1:Point]. ∀[t1:ℝ]. ∀[e2,x2:Point]. ∀[t2:ℝ].
  (hyptrans(rv;e1;t1;x1) ≡ hyptrans(rv;e2;t2;x2)) supposing (x1 ≡ x2 and e1 ≡ e2 and (t1 t2))


Proof




Definitions occuring in Statement :  hyptrans: hyptrans(rv;e;t;x) inner-product-space: InnerProductSpace req: y real: ss-eq: x ≡ y ss-point: Point uimplies: supposing a uall: [x:A]. B[x]
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a hyptrans: hyptrans(rv;e;t;x) ss-eq: x ≡ y not: ¬A implies:  Q false: False subtype_rel: A ⊆B guard: {T} prop: all: x:A. B[x] iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q le: A ≤ B less_than': less_than'(a;b) uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced :  ss-sep_wf real-vector-space_subtype1 inner-product-space_subtype subtype_rel_transitivity inner-product-space_wf real-vector-space_wf separation-space_wf hyptrans_wf ss-eq_wf req_wf real_wf ss-point_wf rv-add_wf rv-mul_wf radd_wf rmul_wf rv-ip_wf rsub_wf cosh_wf int-to-real_wf rsqrt_wf radd-non-neg rleq-int false_wf rv-ip-nonneg rleq_wf sinh_wf ss-eq_weakening ss-eq_functionality rv-add_functionality rv-mul_functionality radd_functionality rmul_functionality rsqrt_functionality rv-ip_functionality req_weakening sinh_functionality rsub_functionality cosh_functionality
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut sqequalRule sqequalHypSubstitution lambdaEquality dependent_functionElimination thin hypothesisEquality because_Cache extract_by_obid isectElimination applyEquality hypothesis instantiate independent_isectElimination isect_memberEquality equalityTransitivity equalitySymmetry voidElimination natural_numberEquality independent_functionElimination productElimination independent_pairFormation lambdaFormation dependent_set_memberEquality setElimination rename setEquality productEquality

Latex:
\mforall{}[rv:InnerProductSpace].  \mforall{}[e1,x1:Point].  \mforall{}[t1:\mBbbR{}].  \mforall{}[e2,x2:Point].  \mforall{}[t2:\mBbbR{}].
    (hyptrans(rv;e1;t1;x1)  \mequiv{}  hyptrans(rv;e2;t2;x2))  supposing  (x1  \mequiv{}  x2  and  e1  \mequiv{}  e2  and  (t1  =  t2))



Date html generated: 2017_10_05-AM-00_27_23
Last ObjectModification: 2017_06_21-PM-01_02_44

Theory : inner!product!spaces


Home Index