Nuprl Lemma : p2J_functionality

[a1,b1,a2,b2:ℙ^2].  (p2J(a1;b1) p2J(a2;b2)) supposing (b1 b2 and a1 a2 and a1 ≠ b1)


Proof




Definitions occuring in Statement :  p2J: p2J(a;b) proj-eq: b proj-sep: a ≠ b real-proj: ^n uimplies: supposing a uall: [x:A]. B[x] natural_number: $n
Definitions unfolded in proof :  uall: [x:A]. B[x] uimplies: supposing a member: t ∈ T nat: le: A ≤ B and: P ∧ Q less_than': less_than'(a;b) false: False not: ¬A implies:  Q prop: all: x:A. B[x] guard: {T} iff: ⇐⇒ Q sq_stable: SqStable(P) rev_implies:  Q squash: T exists: x:A. B[x] subtype_rel: A ⊆B real-proj: ^n real-vec-mul: a*X req-vec: req-vec(n;x;y) int_seg: {i..j-} decidable: Dec(P) or: P ∨ Q sq_type: SQType(T) p2J: p2J(a;b) eq_int: (i =z j) ifthenelse: if then else fi  btrue: tt bfalse: ff lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top real-vec: ^n less_than: a < b true: True uiff: uiff(P;Q) rev_uimplies: rev_uimplies(P;Q) req_int_terms: t1 ≡ t2
Lemmas referenced :  sq_stable__proj-eq false_wf le_wf p2J_wf proj-sep_functionality proj-eq-iff proj-eq_wf proj-sep_wf real-proj_wf rmul-neq-zero rmul_wf rneq_wf int-to-real_wf req-vec_wf real-vec-mul_wf decidable__equal_int subtype_base_sq int_subtype_base int_seg_properties int_seg_subtype int_seg_cases full-omega-unsat intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf int_seg_wf rsub_wf lelt_wf itermSubtract_wf itermMultiply_wf req-iff-rsub-is-0 req_functionality rsub_functionality rmul_functionality req_weakening real_polynomial_null real_term_value_sub_lemma real_term_value_mul_lemma real_term_value_var_lemma real_term_value_const_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin dependent_set_memberEquality natural_numberEquality sqequalRule independent_pairFormation lambdaFormation hypothesis hypothesisEquality independent_isectElimination dependent_functionElimination because_Cache independent_functionElimination productElimination imageElimination setElimination rename imageMemberEquality baseClosed dependent_pairFormation addEquality applyEquality lambdaEquality unionElimination instantiate cumulativity intEquality equalityTransitivity equalitySymmetry hypothesis_subsumption approximateComputation int_eqEquality isect_memberEquality voidElimination voidEquality

Latex:
\mforall{}[a1,b1,a2,b2:\mBbbP{}\^{}2].    (p2J(a1;b1)  =  p2J(a2;b2))  supposing  (b1  =  b2  and  a1  =  a2  and  a1  \mneq{}  b1)



Date html generated: 2017_10_05-AM-00_20_24
Last ObjectModification: 2017_06_17-AM-10_09_43

Theory : inner!product!spaces


Home Index