Nuprl Lemma : vs-map-bag-add
∀[K:Rng]. ∀[vs,ws:VectorSpace(K)]. ∀[g:vs ⟶ ws]. ∀[S:Type]. ∀[f:S ⟶ Point(vs)]. ∀[bs:bag(S)].
  ((g Σ{f[b] | b ∈ bs}) = Σ{g f[b] | b ∈ bs} ∈ Point(ws))
Proof
Definitions occuring in Statement : 
vs-map: A ⟶ B
, 
vs-bag-add: Σ{f[b] | b ∈ bs}
, 
vector-space: VectorSpace(K)
, 
vs-point: Point(vs)
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
, 
rng: Rng
, 
bag: bag(T)
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
squash: ↓T
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
or: P ∨ Q
, 
cons: [a / b]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
colength: colength(L)
, 
nil: []
, 
it: ⋅
, 
guard: {T}
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
sq_type: SQType(T)
, 
less_than: a < b
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
decidable: Dec(P)
, 
subtype_rel: A ⊆r B
, 
rng: Rng
, 
vs-map: A ⟶ B
, 
vs-bag-add: Σ{f[b] | b ∈ bs}
, 
bag-summation: Σ(x∈b). f[x]
, 
bag-accum: bag-accum(v,x.f[v; x];init;bs)
, 
cand: A c∧ B
, 
bag-append: as + bs
, 
append: as @ bs
, 
list_ind: list_ind, 
single-bag: {x}
, 
true: True
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
monoid_p: IsMonoid(T;op;id)
, 
assoc: Assoc(T;op)
, 
infix_ap: x f y
, 
ident: Ident(T;op;id)
, 
comm: Comm(T;op)
Lemmas referenced : 
bag_to_squash_list, 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
istype-less_than, 
list-cases, 
product_subtype_list, 
colength-cons-not-zero, 
colength_wf_list, 
istype-le, 
list_wf, 
subtract-1-ge-0, 
subtype_base_sq, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
set_subtype_base, 
int_subtype_base, 
spread_cons_lemma, 
decidable__equal_int, 
subtract_wf, 
intformnot_wf, 
itermSubtract_wf, 
itermAdd_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
int_term_value_add_lemma, 
decidable__le, 
le_wf, 
istype-nat, 
equal_wf, 
vs-point_wf, 
vs-bag-add_wf, 
bag_wf, 
istype-universe, 
vs-map_wf, 
vector-space_wf, 
rng_wf, 
list_accum_nil_lemma, 
vs-map-0, 
vs-add_wf, 
rng_properties, 
rng_car_wf, 
vs-mul_wf, 
single-bag_wf, 
list-subtype-bag, 
squash_wf, 
true_wf, 
vs-bag-add-append, 
subtype_rel_self, 
iff_weakening_equal, 
rng_sig_wf, 
vs-0_wf, 
vs-mon_assoc, 
vs-mon_ident, 
vs-add-comm-nu, 
bag-summation-single
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
imageElimination, 
productElimination, 
promote_hyp, 
hypothesis, 
rename, 
lambdaFormation_alt, 
setElimination, 
intWeakElimination, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
axiomEquality, 
functionIsTypeImplies, 
inhabitedIsType, 
unionElimination, 
hypothesis_subsumption, 
equalityIstype, 
because_Cache, 
dependent_set_memberEquality_alt, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
applyLambdaEquality, 
baseApply, 
closedConclusion, 
baseClosed, 
applyEquality, 
intEquality, 
sqequalBase, 
hyp_replacement, 
isectIsTypeImplies, 
functionIsType, 
universeEquality, 
productIsType, 
imageMemberEquality, 
independent_pairEquality
Latex:
\mforall{}[K:Rng].  \mforall{}[vs,ws:VectorSpace(K)].  \mforall{}[g:vs  {}\mrightarrow{}  ws].  \mforall{}[S:Type].  \mforall{}[f:S  {}\mrightarrow{}  Point(vs)].  \mforall{}[bs:bag(S)].
    ((g  \mSigma{}\{f[b]  |  b  \mmember{}  bs\})  =  \mSigma{}\{g  f[b]  |  b  \mmember{}  bs\})
Date html generated:
2019_10_31-AM-06_27_07
Last ObjectModification:
2019_08_07-AM-11_26_39
Theory : linear!algebra
Home
Index