Nuprl Lemma : vs-map-bag-add

[K:Rng]. ∀[vs,ws:VectorSpace(K)]. ∀[g:vs ⟶ ws]. ∀[S:Type]. ∀[f:S ⟶ Point(vs)]. ∀[bs:bag(S)].
  ((g Σ{f[b] b ∈ bs}) = Σ{g f[b] b ∈ bs} ∈ Point(ws))


Proof




Definitions occuring in Statement :  vs-map: A ⟶ B vs-bag-add: Σ{f[b] b ∈ bs} vector-space: VectorSpace(K) vs-point: Point(vs) uall: [x:A]. B[x] so_apply: x[s] apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T rng: Rng bag: bag(T)
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T squash: T exists: x:A. B[x] all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top and: P ∧ Q prop: or: P ∨ Q cons: [a b] le: A ≤ B less_than': less_than'(a;b) colength: colength(L) nil: [] it: guard: {T} so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) subtype_rel: A ⊆B rng: Rng vs-map: A ⟶ B vs-bag-add: Σ{f[b] b ∈ bs} bag-summation: Σ(x∈b). f[x] bag-accum: bag-accum(v,x.f[v; x];init;bs) cand: c∧ B bag-append: as bs append: as bs list_ind: list_ind single-bag: {x} true: True iff: ⇐⇒ Q rev_implies:  Q monoid_p: IsMonoid(T;op;id) assoc: Assoc(T;op) infix_ap: y ident: Ident(T;op;id) comm: Comm(T;op)
Lemmas referenced :  bag_to_squash_list nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf istype-less_than list-cases product_subtype_list colength-cons-not-zero colength_wf_list istype-le list_wf subtract-1-ge-0 subtype_base_sq intformeq_wf int_formula_prop_eq_lemma set_subtype_base int_subtype_base spread_cons_lemma decidable__equal_int subtract_wf intformnot_wf itermSubtract_wf itermAdd_wf int_formula_prop_not_lemma int_term_value_subtract_lemma int_term_value_add_lemma decidable__le le_wf istype-nat equal_wf vs-point_wf vs-bag-add_wf bag_wf istype-universe vs-map_wf vector-space_wf rng_wf list_accum_nil_lemma vs-map-0 vs-add_wf rng_properties rng_car_wf vs-mul_wf single-bag_wf list-subtype-bag squash_wf true_wf vs-bag-add-append subtype_rel_self iff_weakening_equal rng_sig_wf vs-0_wf vs-mon_assoc vs-mon_ident vs-add-comm-nu bag-summation-single
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality imageElimination productElimination promote_hyp hypothesis rename lambdaFormation_alt setElimination intWeakElimination natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType axiomEquality functionIsTypeImplies inhabitedIsType unionElimination hypothesis_subsumption equalityIstype because_Cache dependent_set_memberEquality_alt instantiate equalityTransitivity equalitySymmetry applyLambdaEquality baseApply closedConclusion baseClosed applyEquality intEquality sqequalBase hyp_replacement isectIsTypeImplies functionIsType universeEquality productIsType imageMemberEquality independent_pairEquality

Latex:
\mforall{}[K:Rng].  \mforall{}[vs,ws:VectorSpace(K)].  \mforall{}[g:vs  {}\mrightarrow{}  ws].  \mforall{}[S:Type].  \mforall{}[f:S  {}\mrightarrow{}  Point(vs)].  \mforall{}[bs:bag(S)].
    ((g  \mSigma{}\{f[b]  |  b  \mmember{}  bs\})  =  \mSigma{}\{g  f[b]  |  b  \mmember{}  bs\})



Date html generated: 2019_10_31-AM-06_27_07
Last ObjectModification: 2019_08_07-AM-11_26_39

Theory : linear!algebra


Home Index