Nuprl Lemma : pscm-adjoin-wf

[C:SmallCategory]. ∀[Gamma,Delta:ps_context{j:l}(C)]. ∀[A:{Gamma ⊢_}]. ∀[sigma:psc_map{j:l}(C; Delta; Gamma)].
[u:{Delta ⊢ _:(A)sigma}].
  ((sigma;u) ∈ psc_map{[i j]:l}(C; Delta; Gamma.A))


Proof




Definitions occuring in Statement :  pscm-adjoin: (s;u) psc-adjoin: X.A presheaf-term: {X ⊢ _:A} pscm-ap-type: (AF)s presheaf-type: {X ⊢ _} psc_map: A ⟶ B ps_context: __⊢ uall: [x:A]. B[x] member: t ∈ T small-category: SmallCategory
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T subtype_rel: A ⊆B pscm-adjoin: (s;u) I_set: A(I) functor-ob: ob(F) pi1: fst(t) psc-adjoin: X.A presheaf-term: {X ⊢ _:A} uimplies: supposing a all: x:A. B[x] psc-adjoin-set: (v;u) presheaf-term-at: u(a) squash: T prop: true: True guard: {T} iff: ⇐⇒ Q and: P ∧ Q rev_implies:  Q implies:  Q
Lemmas referenced :  psc-map-is ps_context_cumulativity2 small-category-cumulativity-2 psc-adjoin-wf presheaf-type-cumulativity2 small-category-subtype pscm-ap_wf subtype_rel-equal presheaf-type-at_wf pscm-ap-type_wf pscm-ap-type-at I_set_wf cat-ob_wf cat-arrow_wf psc-adjoin_wf psc-restriction_wf presheaf-term_wf psc_map_wf presheaf-type_wf ps_context_wf small-category_wf equal_wf squash_wf true_wf istype-universe presheaf-type-ap-morph_wf presheaf-term-at_wf presheaf-term-at-morph pscm-ap-restriction subtype_rel_self iff_weakening_equal pscm-presheaf-type-ap-morph psc-adjoin-set-restriction psc-adjoin-set_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt cut thin instantiate introduction extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality applyEquality hypothesis sqequalRule because_Cache dependent_set_memberEquality_alt lambdaEquality_alt dependent_pairEquality_alt setElimination rename independent_isectElimination Error :memTop,  universeIsType lambdaFormation_alt inhabitedIsType functionIsType equalityIstype imageElimination equalityTransitivity equalitySymmetry universeEquality dependent_functionElimination natural_numberEquality imageMemberEquality baseClosed productElimination independent_functionElimination

Latex:
\mforall{}[C:SmallCategory].  \mforall{}[Gamma,Delta:ps\_context\{j:l\}(C)].  \mforall{}[A:\{Gamma  \mvdash{}'  \_\}].
\mforall{}[sigma:psc\_map\{j:l\}(C;  Delta;  Gamma)].  \mforall{}[u:\{Delta  \mvdash{}  \_:(A)sigma\}].
    ((sigma;u)  \mmember{}  psc\_map\{[i  |  j]:l\}(C;  Delta;  Gamma.A))



Date html generated: 2020_05_20-PM-01_27_52
Last ObjectModification: 2020_04_02-PM-01_47_57

Theory : presheaf!models!of!type!theory


Home Index