Nuprl Lemma : frs-increasing-separated-common-refinement
∀p,q:ℝ List.
  (frs-increasing(p)
  ⇒ frs-increasing(q)
  ⇒ frs-separated(p;q)
  ⇒ (∃r:ℝ List. (frs-increasing(r) ∧ frs-refines(r;p) ∧ frs-refines(r;q) ∧ frs-refines(p @ q;r))))
Proof
Definitions occuring in Statement : 
frs-separated: frs-separated(p;q), 
frs-increasing: frs-increasing(p), 
frs-refines: frs-refines(p;q), 
real: ℝ, 
append: as @ bs, 
list: T List, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
and: P ∧ Q
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
so_lambda: λ2x y.t[x; y], 
trans: Trans(T;x,y.E[x; y]), 
guard: {T}, 
uimplies: b supposing a, 
prop: ℙ, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
and: P ∧ Q, 
frs-separated: frs-separated(p;q), 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
rneq: x ≠ y, 
exists: ∃x:A. B[x], 
cand: A c∧ B, 
frs-refines: frs-refines(p;q), 
l_all: (∀x∈L.P[x]), 
l_contains: A ⊆ B, 
l_member: (x ∈ l), 
l_exists: (∃x∈L. P[x]), 
nat: ℕ, 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
le: A ≤ B, 
ge: i ≥ j , 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
not: ¬A, 
top: Top, 
less_than: a < b, 
squash: ↓T, 
uiff: uiff(P;Q)
Lemmas referenced : 
merge-strict-exists, 
real_wf, 
rless_wf, 
rless_transitivity2, 
rleq_weakening_rless, 
l_member_wf, 
frs-increasing-sorted-by, 
frs-separated_wf, 
frs-increasing_wf, 
list_wf, 
l_all_iff, 
l_all_wf2, 
rneq_wf, 
all_wf, 
lelt_wf, 
length_wf, 
req_weakening, 
req_wf, 
select_wf, 
int_seg_properties, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
int_seg_wf, 
length-append, 
append_wf, 
add-is-int-iff, 
itermAdd_wf, 
int_term_value_add_lemma, 
false_wf, 
frs-refines_wf, 
le_wf, 
and_wf, 
equal_wf, 
nat_wf, 
less_than_wf
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
hypothesisEquality, 
independent_functionElimination, 
dependent_functionElimination, 
independent_isectElimination, 
because_Cache, 
productElimination, 
independent_pairFormation, 
addLevel, 
setElimination, 
rename, 
setEquality, 
allFunctionality, 
levelHypothesis, 
promote_hyp, 
functionEquality, 
dependent_pairFormation, 
dependent_set_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
natural_numberEquality, 
unionElimination, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
imageElimination, 
addEquality, 
pointwiseFunctionality, 
baseApply, 
closedConclusion, 
baseClosed, 
productEquality, 
hyp_replacement, 
applyEquality
Latex:
\mforall{}p,q:\mBbbR{}  List.
    (frs-increasing(p)
    {}\mRightarrow{}  frs-increasing(q)
    {}\mRightarrow{}  frs-separated(p;q)
    {}\mRightarrow{}  (\mexists{}r:\mBbbR{}  List.  (frs-increasing(r)  \mwedge{}  frs-refines(r;p)  \mwedge{}  frs-refines(r;q)  \mwedge{}  frs-refines(p  @  q;r))))
Date html generated:
2016_10_26-AM-09_33_11
Last ObjectModification:
2016_07_12-AM-08_20_23
Theory : reals
Home
Index