Nuprl Lemma : r2-left-between
∀a,b,x,y:ℝ^2.  (r2-left(x;a;b) 
⇒ rv-T(2;b;y;x) 
⇒ b ≠ y 
⇒ r2-left(y;a;b))
Proof
Definitions occuring in Statement : 
r2-left: r2-left(p;q;r)
, 
rv-T: rv-T(n;a;b;c)
, 
real-vec-sep: a ≠ b
, 
real-vec: ℝ^n
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
natural_number: $n
Definitions unfolded in proof : 
r2-left: r2-left(p;q;r)
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
le: A ≤ B
, 
and: P ∧ Q
, 
less_than': less_than'(a;b)
, 
false: False
, 
not: ¬A
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
exists: ∃x:A. B[x]
, 
cand: A c∧ B
, 
rv-congruent: ab=cd
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
rv-T: rv-T(n;a;b;c)
, 
iff: P 
⇐⇒ Q
, 
real-vec-be: real-vec-be(n;a;b;c)
, 
top: Top
, 
real-vec: ℝ^n
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
less_than: a < b
, 
squash: ↓T
, 
true: True
, 
r2-det: |pqr|
, 
uiff: uiff(P;Q)
, 
rev_uimplies: rev_uimplies(P;Q)
, 
req_int_terms: t1 ≡ t2
, 
rless: x < y
, 
sq_exists: ∃x:{A| B[x]}
, 
real-vec-sep: a ≠ b
, 
or: P ∨ Q
, 
rev_implies: P 
⇐ Q
, 
rneq: x ≠ y
, 
guard: {T}
Lemmas referenced : 
real-vec-sep_wf, 
false_wf, 
le_wf, 
rv-T_wf, 
rless_wf, 
int-to-real_wf, 
r2-det_wf, 
real-vec_wf, 
rv-Tsep-alt, 
not_wf, 
exists_wf, 
rv-congruent_wf, 
rv-congruent-sym, 
req_weakening, 
real-vec-dist_wf, 
real-vec-sep-symmetry, 
member_rccint_lemma, 
real-vec-add_wf, 
real-vec-mul_wf, 
rsub_wf, 
rmul_wf, 
radd_wf, 
lelt_wf, 
itermSubtract_wf, 
itermAdd_wf, 
itermMultiply_wf, 
itermVar_wf, 
itermConstant_wf, 
req-iff-rsub-is-0, 
req_functionality, 
r2-det_functionality, 
req-vec_weakening, 
r2-det-add, 
radd_functionality, 
r2-det-mul, 
real_polynomial_null, 
real_term_value_sub_lemma, 
real_term_value_add_lemma, 
real_term_value_mul_lemma, 
real_term_value_var_lemma, 
real_term_value_const_lemma, 
rmul_functionality, 
rabs_wf, 
rless_functionality, 
real-vec-dist_functionality, 
real-vec-dist-between-1, 
rmul-is-positive, 
rabs-positive-iff, 
rless-implies-rless, 
radd-preserves-rless, 
radd-zero, 
rless_transitivity2, 
rless_transitivity1, 
zero-rleq-rabs, 
rless_irreflexivity
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
lambdaFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_set_memberEquality, 
natural_numberEquality, 
independent_pairFormation, 
hypothesis, 
hypothesisEquality, 
dependent_functionElimination, 
independent_functionElimination, 
voidElimination, 
lambdaEquality, 
because_Cache, 
productEquality, 
dependent_pairFormation, 
applyEquality, 
independent_isectElimination, 
productElimination, 
isect_memberEquality, 
voidEquality, 
imageMemberEquality, 
baseClosed, 
approximateComputation, 
int_eqEquality, 
intEquality, 
promote_hyp, 
unionElimination, 
inlFormation
Latex:
\mforall{}a,b,x,y:\mBbbR{}\^{}2.    (r2-left(x;a;b)  {}\mRightarrow{}  rv-T(2;b;y;x)  {}\mRightarrow{}  b  \mneq{}  y  {}\mRightarrow{}  r2-left(y;a;b))
Date html generated:
2017_10_03-AM-11_55_41
Last ObjectModification:
2017_06_14-PM-04_32_43
Theory : reals
Home
Index