Nuprl Lemma : arcsine_functionality_wrt_rless
∀x,y:{x:ℝ| x ∈ (r(-1), r1)} .  ((x < y) ⇒ (arcsine(x) < arcsine(y)))
Proof
Definitions occuring in Statement : 
arcsine: arcsine(x), 
rooint: (l, u), 
i-member: r ∈ I, 
rless: x < y, 
int-to-real: r(n), 
real: ℝ, 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
set: {x:A| B[x]} , 
minus: -n, 
natural_number: $n
Definitions unfolded in proof : 
so_apply: x[s], 
rfun: I ⟶ℝ, 
so_lambda: λ2x.t[x], 
prop: ℙ, 
true: True, 
less_than': less_than'(a;b), 
squash: ↓T, 
less_than: a < b, 
rev_implies: P ⇐ Q, 
and: P ∧ Q, 
iff: P ⇐⇒ Q, 
pi2: snd(t), 
pi1: fst(t), 
outl: outl(x), 
rooint: (l, u), 
endpoints: endpoints(I), 
left-endpoint: left-endpoint(I), 
right-endpoint: right-endpoint(I), 
iproper: iproper(I), 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
implies: P ⇒ Q, 
all: ∀x:A. B[x], 
rev_uimplies: rev_uimplies(P;Q), 
uiff: uiff(P;Q), 
uimplies: b supposing a, 
sq_stable: SqStable(P), 
top: Top, 
i-member: r ∈ I, 
arcsine_deriv: arcsine_deriv(x), 
rdiv: (x/y), 
not: ¬A, 
false: False, 
req_int_terms: t1 ≡ t2, 
itermConstant: "const", 
or: P ∨ Q, 
guard: {T}, 
rneq: x ≠ y, 
subtype_rel: A ⊆r B, 
strictly-increasing-on-interval: f[x] strictly-increasing for x ∈ I
Lemmas referenced : 
set_wf, 
rless_wf, 
derivative-arcsine, 
arcsine_deriv_wf, 
real_wf, 
i-member_wf, 
arcsine_wf, 
i-finite_wf, 
rless-int, 
int-to-real_wf, 
rooint_wf, 
derivative-implies-strictly-increasing, 
req_wf, 
req_weakening, 
arcsine_deriv_functionality, 
req_functionality, 
function-is-continuous, 
sq_stable__rless, 
member_rooint_lemma, 
arcsine-root-bounds, 
rmul-rinv, 
req_transitivity, 
req-iff-rsub-is-0, 
real_term_value_var_lemma, 
real_term_value_mul_lemma, 
real_term_value_sub_lemma, 
real_term_value_const_lemma, 
itermVar_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermSubtract_wf, 
real_term_polynomial, 
rless_functionality, 
rinv_wf2, 
rleq_wf, 
rsub_wf, 
rleq_weakening_rless, 
rmul_wf, 
rsqrt-positive, 
rsqrt_wf, 
rdiv_wf, 
rmul_preserves_rless
Rules used in proof : 
setEquality, 
dependent_set_memberEquality, 
rename, 
setElimination, 
lambdaEquality, 
baseClosed, 
hypothesisEquality, 
imageMemberEquality, 
because_Cache, 
independent_pairFormation, 
productElimination, 
sqequalRule, 
independent_functionElimination, 
hypothesis, 
natural_numberEquality, 
minusEquality, 
isectElimination, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_isectElimination, 
imageElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
computeAll, 
inrFormation, 
applyEquality
Latex:
\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  (r(-1),  r1)\}  .    ((x  <  y)  {}\mRightarrow{}  (arcsine(x)  <  arcsine(y)))
Date html generated:
2017_10_04-PM-10_47_12
Last ObjectModification:
2017_08_02-PM-00_31_34
Theory : reals_2
Home
Index