Nuprl Lemma : arcsine_functionality_wrt_rless
∀x,y:{x:ℝ| x ∈ (r(-1), r1)} .  ((x < y) 
⇒ (arcsine(x) < arcsine(y)))
Proof
Definitions occuring in Statement : 
arcsine: arcsine(x)
, 
rooint: (l, u)
, 
i-member: r ∈ I
, 
rless: x < y
, 
int-to-real: r(n)
, 
real: ℝ
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
set: {x:A| B[x]} 
, 
minus: -n
, 
natural_number: $n
Definitions unfolded in proof : 
so_apply: x[s]
, 
rfun: I ⟶ℝ
, 
so_lambda: λ2x.t[x]
, 
prop: ℙ
, 
true: True
, 
less_than': less_than'(a;b)
, 
squash: ↓T
, 
less_than: a < b
, 
rev_implies: P 
⇐ Q
, 
and: P ∧ Q
, 
iff: P 
⇐⇒ Q
, 
pi2: snd(t)
, 
pi1: fst(t)
, 
outl: outl(x)
, 
rooint: (l, u)
, 
endpoints: endpoints(I)
, 
left-endpoint: left-endpoint(I)
, 
right-endpoint: right-endpoint(I)
, 
iproper: iproper(I)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
implies: P 
⇒ Q
, 
all: ∀x:A. B[x]
, 
rev_uimplies: rev_uimplies(P;Q)
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
sq_stable: SqStable(P)
, 
top: Top
, 
i-member: r ∈ I
, 
arcsine_deriv: arcsine_deriv(x)
, 
rdiv: (x/y)
, 
not: ¬A
, 
false: False
, 
req_int_terms: t1 ≡ t2
, 
itermConstant: "const"
, 
or: P ∨ Q
, 
guard: {T}
, 
rneq: x ≠ y
, 
subtype_rel: A ⊆r B
, 
strictly-increasing-on-interval: f[x] strictly-increasing for x ∈ I
Lemmas referenced : 
set_wf, 
rless_wf, 
derivative-arcsine, 
arcsine_deriv_wf, 
real_wf, 
i-member_wf, 
arcsine_wf, 
i-finite_wf, 
rless-int, 
int-to-real_wf, 
rooint_wf, 
derivative-implies-strictly-increasing, 
req_wf, 
req_weakening, 
arcsine_deriv_functionality, 
req_functionality, 
function-is-continuous, 
sq_stable__rless, 
member_rooint_lemma, 
arcsine-root-bounds, 
rmul-rinv, 
req_transitivity, 
req-iff-rsub-is-0, 
real_term_value_var_lemma, 
real_term_value_mul_lemma, 
real_term_value_sub_lemma, 
real_term_value_const_lemma, 
itermVar_wf, 
itermConstant_wf, 
itermMultiply_wf, 
itermSubtract_wf, 
real_term_polynomial, 
rless_functionality, 
rinv_wf2, 
rleq_wf, 
rsub_wf, 
rleq_weakening_rless, 
rmul_wf, 
rsqrt-positive, 
rsqrt_wf, 
rdiv_wf, 
rmul_preserves_rless
Rules used in proof : 
setEquality, 
dependent_set_memberEquality, 
rename, 
setElimination, 
lambdaEquality, 
baseClosed, 
hypothesisEquality, 
imageMemberEquality, 
because_Cache, 
independent_pairFormation, 
productElimination, 
sqequalRule, 
independent_functionElimination, 
hypothesis, 
natural_numberEquality, 
minusEquality, 
isectElimination, 
thin, 
dependent_functionElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
cut, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
independent_isectElimination, 
imageElimination, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
intEquality, 
int_eqEquality, 
computeAll, 
inrFormation, 
applyEquality
Latex:
\mforall{}x,y:\{x:\mBbbR{}|  x  \mmember{}  (r(-1),  r1)\}  .    ((x  <  y)  {}\mRightarrow{}  (arcsine(x)  <  arcsine(y)))
Date html generated:
2017_10_04-PM-10_47_12
Last ObjectModification:
2017_08_02-PM-00_31_34
Theory : reals_2
Home
Index