Nuprl Lemma : rsin-shift-MachinPi4
∀x:ℝ. ∀M:ℤ. (rsin(x - 8 * M * MachinPi4()) = rsin(x))
Proof
Definitions occuring in Statement :
MachinPi4: MachinPi4()
,
rsin: rsin(x)
,
int-rmul: k1 * a
,
rsub: x - y
,
req: x = y
,
real: ℝ
,
all: ∀x:A. B[x]
,
multiply: n * m
,
natural_number: $n
,
int: ℤ
Definitions unfolded in proof :
all: ∀x:A. B[x]
,
member: t ∈ T
,
uall: ∀[x:A]. B[x]
,
nat: ℕ
,
implies: P
⇒ Q
,
false: False
,
ge: i ≥ j
,
uimplies: b supposing a
,
not: ¬A
,
satisfiable_int_formula: satisfiable_int_formula(fmla)
,
exists: ∃x:A. B[x]
,
top: Top
,
and: P ∧ Q
,
prop: ℙ
,
subtype_rel: A ⊆r B
,
uiff: uiff(P;Q)
,
rev_uimplies: rev_uimplies(P;Q)
,
req_int_terms: t1 ≡ t2
,
rneq: x ≠ y
,
guard: {T}
,
or: P ∨ Q
,
iff: P
⇐⇒ Q
,
rev_implies: P
⇐ Q
,
less_than: a < b
,
squash: ↓T
,
less_than': less_than'(a;b)
,
true: True
,
decidable: Dec(P)
,
sq_type: SQType(T)
,
int_nzero: ℤ-o
,
nequal: a ≠ b ∈ T
,
rdiv: (x/y)
Lemmas referenced :
real_wf,
nat_properties,
full-omega-unsat,
intformand_wf,
intformle_wf,
itermConstant_wf,
itermVar_wf,
intformless_wf,
istype-int,
int_formula_prop_and_lemma,
istype-void,
int_formula_prop_le_lemma,
int_term_value_constant_lemma,
int_term_value_var_lemma,
int_formula_prop_less_lemma,
int_formula_prop_wf,
ge_wf,
istype-less_than,
req_witness,
rsin_wf,
rsub_wf,
int-rmul_wf,
MachinPi4_wf,
subtract-1-ge-0,
istype-nat,
rmul_wf,
int-to-real_wf,
itermSubtract_wf,
itermMultiply_wf,
req_weakening,
req_functionality,
rsin_functionality,
rsub_functionality,
int-rmul-req,
req_transitivity,
rmul_functionality,
req_inversion,
rmul-int,
req-iff-rsub-is-0,
real_polynomial_null,
real_term_value_sub_lemma,
real_term_value_var_lemma,
real_term_value_mul_lemma,
real_term_value_const_lemma,
rsin-shift-2pi,
radd_wf,
pi_wf,
subtract_wf,
radd-preserves-req,
itermAdd_wf,
rminus_wf,
itermMinus_wf,
radd_functionality,
rminus-int,
rsub-int,
real_term_value_add_lemma,
real_term_value_minus_lemma,
rdiv_wf,
rless-int,
rless_wf,
rinv_wf2,
subtype_base_sq,
int_subtype_base,
decidable__equal_int,
intformnot_wf,
intformeq_wf,
int_formula_prop_not_lemma,
int_formula_prop_eq_lemma,
int_term_value_mul_lemma,
nequal_wf,
MachinPi4-req,
int-rinv-cancel,
squash_wf,
true_wf,
decidable__le,
istype-le,
int_term_value_minus_lemma
Rules used in proof :
sqequalSubstitution,
sqequalTransitivity,
computationStep,
sqequalReflexivity,
lambdaFormation_alt,
cut,
universeIsType,
introduction,
extract_by_obid,
hypothesis,
sqequalHypSubstitution,
isectElimination,
thin,
hypothesisEquality,
setElimination,
rename,
intWeakElimination,
natural_numberEquality,
independent_isectElimination,
approximateComputation,
independent_functionElimination,
dependent_pairFormation_alt,
lambdaEquality_alt,
int_eqEquality,
dependent_functionElimination,
isect_memberEquality_alt,
voidElimination,
sqequalRule,
independent_pairFormation,
functionIsTypeImplies,
inhabitedIsType,
multiplyEquality,
applyEquality,
equalityTransitivity,
equalitySymmetry,
because_Cache,
productElimination,
minusEquality,
closedConclusion,
inrFormation_alt,
imageMemberEquality,
baseClosed,
instantiate,
cumulativity,
intEquality,
unionElimination,
dependent_set_memberEquality_alt,
equalityIstype,
sqequalBase,
imageElimination
Latex:
\mforall{}x:\mBbbR{}. \mforall{}M:\mBbbZ{}. (rsin(x - 8 * M * MachinPi4()) = rsin(x))
Date html generated:
2019_10_31-AM-06_07_47
Last ObjectModification:
2019_01_29-PM-03_45_06
Theory : reals_2
Home
Index