Nuprl Lemma : corec-greatest

[F:Type ⟶ Type]. ∀[X:Type]. X ⊆corec(T.F[T]) supposing X ≡ F[X] supposing Monotone(T.F[T])


Proof




Definitions occuring in Statement :  corec: corec(T.F[T]) type-monotone: Monotone(T.F[T]) ext-eq: A ≡ B uimplies: supposing a subtype_rel: A ⊆B uall: [x:A]. B[x] so_apply: x[s] function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  bfalse: ff it: unit: Unit bool: 𝔹 type-monotone: Monotone(T.F[T]) true: True less_than': less_than'(a;b) le: A ≤ B uiff: uiff(P;Q) rev_implies:  Q not: ¬A and: P ∧ Q iff: ⇐⇒ Q or: P ∨ Q decidable: Dec(P) btrue: tt ifthenelse: if then else fi  subtract: m lt_int: i <j top: Top subtype_rel: A ⊆B guard: {T} ge: i ≥  false: False implies:  Q nat: all: x:A. B[x] so_lambda: λ2x.t[x] prop: so_apply: x[s] member: t ∈ T corec: corec(T.F[T]) uimplies: supposing a uall: [x:A]. B[x]
Lemmas referenced :  equal_wf assert_of_le_int bnot_of_lt_int assert_functionality_wrt_uiff eqff_to_assert assert_of_lt_int eqtt_to_assert uiff_transitivity subtype_rel_weakening subtype_rel_transitivity int_seg_wf top_wf not-le-2 primrec_wf bnot_wf le_wf le_int_wf assert_wf int_subtype_base equal-wf-base bool_wf lt_int_wf nat_wf le-add-cancel add-zero add_functionality_wrt_le add-commutes add-swap add-associates minus-minus minus-add minus-one-mul-top zero-add minus-one-mul condition-implies-le less-iff-le not-ge-2 false_wf subtract_wf decidable__le primrec-unroll less_than_wf ge_wf less_than_irreflexivity less_than_transitivity1 nat_properties type-monotone_wf ext-eq_wf
Rules used in proof :  equalitySymmetry equalityTransitivity equalityElimination cumulativity functionExtensionality dependent_set_memberEquality instantiate baseClosed closedConclusion baseApply because_Cache minusEquality intEquality addEquality productElimination independent_pairFormation unionElimination voidEquality isect_memberEquality axiomEquality dependent_functionElimination voidElimination independent_functionElimination independent_isectElimination natural_numberEquality intWeakElimination rename setElimination lambdaFormation functionEquality lambdaEquality sqequalRule universeEquality hypothesis applyEquality hypothesisEquality thin isectElimination sqequalHypSubstitution extract_by_obid introduction cut isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution

Latex:
\mforall{}[F:Type  {}\mrightarrow{}  Type].  \mforall{}[X:Type].  X  \msubseteq{}r  corec(T.F[T])  supposing  X  \mequiv{}  F[X]  supposing  Monotone(T.F[T])



Date html generated: 2018_07_29-AM-09_21_24
Last ObjectModification: 2018_07_25-PM-06_19_46

Theory : co-recursion


Home Index