Nuprl Lemma : extended-fan-theorem
∀C:ℕ ⟶ (ℕ ⟶ 𝔹) ⟶ ℙ
  ((∀a:ℕ ⟶ 𝔹. ∃n:ℕ. (C n a)) ⇒ ⇃(∃m:ℕ. ∀a:ℕ ⟶ 𝔹. ∃n:ℕ. ∀b:ℕ ⟶ 𝔹. ((a = b ∈ (ℕm ⟶ 𝔹)) ⇒ (C n b))))
Proof
Definitions occuring in Statement : 
quotient: x,y:A//B[x; y], 
int_seg: {i..j-}, 
nat: ℕ, 
bool: 𝔹, 
prop: ℙ, 
all: ∀x:A. B[x], 
exists: ∃x:A. B[x], 
implies: P ⇒ Q, 
true: True, 
apply: f a, 
function: x:A ⟶ B[x], 
natural_number: $n, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
member: t ∈ T, 
prop: ℙ, 
uall: ∀[x:A]. B[x], 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
exists: ∃x:A. B[x], 
nat: ℕ, 
and: P ∧ Q, 
uimplies: b supposing a, 
le: A ≤ B, 
less_than': less_than'(a;b), 
false: False, 
not: ¬A, 
true: True, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
cand: A c∧ B, 
quotient: x,y:A//B[x; y], 
squash: ↓T, 
isl: isl(x), 
sq_type: SQType(T), 
guard: {T}, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
pi1: fst(t), 
int_seg: {i..j-}, 
ge: i ≥ j , 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
top: Top, 
uiff: uiff(P;Q), 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
all_wf, 
nat_wf, 
bool_wf, 
exists_wf, 
strong-continuity2-no-inner-squash-unique-bool, 
pi1_wf, 
equal_wf, 
int_seg_wf, 
unit_wf2, 
subtype_rel_dep_function, 
int_seg_subtype_nat, 
false_wf, 
subtype_rel_self, 
assert_wf, 
isl_wf, 
true_wf, 
quotient_wf, 
equiv_rel_true, 
quotient-member-eq, 
equal-wf-base, 
member_wf, 
squash_wf, 
fan_theorem, 
decidable__assert, 
and_wf, 
btrue_wf, 
subtype_base_sq, 
bool_subtype_base, 
set_subtype_base, 
le_wf, 
int_subtype_base, 
int_seg_subtype, 
int_seg_properties, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
assert_functionality_wrt_uiff, 
itermConstant_wf, 
int_term_value_constant_lemma, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
rename, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
functionEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
cumulativity, 
universeEquality, 
dependent_functionElimination, 
because_Cache, 
productElimination, 
dependent_pairEquality, 
equalityTransitivity, 
equalitySymmetry, 
independent_functionElimination, 
natural_numberEquality, 
setElimination, 
unionEquality, 
productEquality, 
independent_isectElimination, 
independent_pairFormation, 
inlEquality, 
promote_hyp, 
pointwiseFunctionality, 
pertypeElimination, 
imageElimination, 
imageMemberEquality, 
baseClosed, 
dependent_pairFormation, 
dependent_set_memberEquality, 
applyLambdaEquality, 
instantiate, 
intEquality, 
unionElimination, 
int_eqEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll
Latex:
\mforall{}C:\mBbbN{}  {}\mrightarrow{}  (\mBbbN{}  {}\mrightarrow{}  \mBbbB{})  {}\mrightarrow{}  \mBbbP{}
    ((\mforall{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \mexists{}n:\mBbbN{}.  (C  n  a))  {}\mRightarrow{}  \00D9(\mexists{}m:\mBbbN{}.  \mforall{}a:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  \mexists{}n:\mBbbN{}.  \mforall{}b:\mBbbN{}  {}\mrightarrow{}  \mBbbB{}.  ((a  =  b)  {}\mRightarrow{}  (C  n  b))))
Date html generated:
2017_04_20-AM-07_22_19
Last ObjectModification:
2017_02_27-PM-05_57_48
Theory : continuity
Home
Index