Nuprl Lemma : deq-member-firstn
∀[A:Type]. ∀[eq:EqDecider(A)]. ∀[L:A List]. ∀[n:ℕ+].
  ∀[x:A]. (x ∈b firstn(n;L) ~ x ∈b firstn(n - 1;L) ∨b(eqof(eq) x L[n - 1])) supposing n - 1 < ||L||
Proof
Definitions occuring in Statement : 
firstn: firstn(n;as)
, 
select: L[n]
, 
length: ||as||
, 
deq-member: x ∈b L
, 
list: T List
, 
eqof: eqof(d)
, 
deq: EqDecider(T)
, 
bor: p ∨bq
, 
nat_plus: ℕ+
, 
less_than: a < b
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
apply: f a
, 
subtract: n - m
, 
natural_number: $n
, 
universe: Type
, 
sqequal: s ~ t
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
uimplies: b supposing a
, 
nat_plus: ℕ+
, 
all: ∀x:A. B[x]
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
implies: P 
⇒ Q
, 
not: ¬A
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
iff: P 
⇐⇒ Q
, 
uiff: uiff(P;Q)
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
subtype_rel: A ⊆r B
Lemmas referenced : 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
iff_imp_equal_bool, 
deq-member_wf, 
firstn_wf, 
bor_wf, 
select_wf, 
nat_plus_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermSubtract_wf, 
itermVar_wf, 
intformless_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_subtract_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
iff_transitivity, 
assert_wf, 
or_wf, 
l_member_wf, 
equal_wf, 
iff_weakening_uiff, 
assert_of_bor, 
subtract_wf, 
assert-deq-member, 
safe-assert-deq, 
less_than_wf, 
length_wf, 
nat_plus_wf, 
list_wf, 
deq_wf, 
firstn_decomp, 
nat_plus_subtype_nat, 
decidable__lt, 
member_append, 
cons_wf, 
nil_wf, 
member_singleton
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
instantiate, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
cumulativity, 
hypothesis, 
independent_isectElimination, 
hypothesisEquality, 
setElimination, 
rename, 
because_Cache, 
applyEquality, 
dependent_functionElimination, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
lambdaEquality, 
int_eqEquality, 
intEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
sqequalRule, 
independent_pairFormation, 
computeAll, 
lambdaFormation, 
independent_functionElimination, 
orFunctionality, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
sqequalAxiom, 
universeEquality, 
addLevel, 
promote_hyp
Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[L:A  List].  \mforall{}[n:\mBbbN{}\msupplus{}].
    \mforall{}[x:A].  (x  \mmember{}\msubb{}  firstn(n;L)  \msim{}  x  \mmember{}\msubb{}  firstn(n  -  1;L)  \mvee{}\msubb{}(eqof(eq)  x  L[n  -  1]))  supposing  n  -  1  <  ||L||
Date html generated:
2017_09_29-PM-06_04_21
Last ObjectModification:
2017_07_26-PM-02_53_03
Theory : decidable!equality
Home
Index