Nuprl Lemma : deq-member-firstn

[A:Type]. ∀[eq:EqDecider(A)]. ∀[L:A List]. ∀[n:ℕ+].
  ∀[x:A]. (x ∈b firstn(n;L) x ∈b firstn(n 1;L) ∨b(eqof(eq) L[n 1])) supposing 1 < ||L||


Proof




Definitions occuring in Statement :  firstn: firstn(n;as) select: L[n] length: ||as|| deq-member: x ∈b L list: List eqof: eqof(d) deq: EqDecider(T) bor: p ∨bq nat_plus: + less_than: a < b uimplies: supposing a uall: [x:A]. B[x] apply: a subtract: m natural_number: $n universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T uimplies: supposing a nat_plus: + all: x:A. B[x] decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] false: False implies:  Q not: ¬A top: Top and: P ∧ Q prop: iff: ⇐⇒ Q uiff: uiff(P;Q) rev_implies:  Q sq_type: SQType(T) guard: {T} subtype_rel: A ⊆B
Lemmas referenced :  subtype_base_sq bool_wf bool_subtype_base iff_imp_equal_bool deq-member_wf firstn_wf bor_wf select_wf nat_plus_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf iff_transitivity assert_wf or_wf l_member_wf equal_wf iff_weakening_uiff assert_of_bor subtract_wf assert-deq-member safe-assert-deq less_than_wf length_wf nat_plus_wf list_wf deq_wf firstn_decomp nat_plus_subtype_nat decidable__lt member_append cons_wf nil_wf member_singleton
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin instantiate extract_by_obid sqequalHypSubstitution isectElimination cumulativity hypothesis independent_isectElimination hypothesisEquality setElimination rename because_Cache applyEquality dependent_functionElimination unionElimination natural_numberEquality dependent_pairFormation lambdaEquality int_eqEquality intEquality isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll lambdaFormation independent_functionElimination orFunctionality productElimination equalityTransitivity equalitySymmetry sqequalAxiom universeEquality addLevel promote_hyp

Latex:
\mforall{}[A:Type].  \mforall{}[eq:EqDecider(A)].  \mforall{}[L:A  List].  \mforall{}[n:\mBbbN{}\msupplus{}].
    \mforall{}[x:A].  (x  \mmember{}\msubb{}  firstn(n;L)  \msim{}  x  \mmember{}\msubb{}  firstn(n  -  1;L)  \mvee{}\msubb{}(eqof(eq)  x  L[n  -  1]))  supposing  n  -  1  <  ||L||



Date html generated: 2017_09_29-PM-06_04_21
Last ObjectModification: 2017_07_26-PM-02_53_03

Theory : decidable!equality


Home Index