Nuprl Lemma : mccarthy91_wf1
∀x:ℤ. (mccarthy91(x) ∈ {m:ℤ| m = if x ≤z 101 then 91 else x - 10 fi  ∈ ℤ} )
Proof
Definitions occuring in Statement : 
mccarthy91: mccarthy91(x)
, 
le_int: i ≤z j
, 
ifthenelse: if b then t else f fi 
, 
all: ∀x:A. B[x]
, 
member: t ∈ T
, 
set: {x:A| B[x]} 
, 
subtract: n - m
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
bnot: ¬bb
, 
guard: {T}
, 
sq_type: SQType(T)
, 
bfalse: ff
, 
or: P ∨ Q
, 
decidable: Dec(P)
, 
squash: ↓T
, 
true: True
, 
less_than': less_than'(a;b)
, 
less_than: a < b
, 
uiff: uiff(P;Q)
, 
btrue: tt
, 
it: ⋅
, 
unit: Unit
, 
bool: 𝔹
, 
mccarthy91: mccarthy91(x)
, 
prop: ℙ
, 
and: P ∧ Q
, 
top: Top
, 
exists: ∃x:A. B[x]
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
not: ¬A
, 
uimplies: b supposing a
, 
ge: i ≥ j 
, 
false: False
, 
implies: P 
⇒ Q
, 
nat: ℕ
, 
member: t ∈ T
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
has-value: (a)↓
, 
rev_implies: P 
⇐ Q
, 
iff: P 
⇐⇒ Q
, 
subtype_rel: A ⊆r B
, 
subtract: n - m
, 
lelt: i ≤ j < k
, 
int_seg: {i..j-}
, 
le: A ≤ B
, 
label: ...$L... t
, 
so_apply: x[s]
, 
so_lambda: λ2x.t[x]
Lemmas referenced : 
nat_wf, 
decidable__le, 
assert-bnot, 
bool_subtype_base, 
subtype_base_sq, 
bool_cases_sqequal, 
equal_wf, 
eqff_to_assert, 
int_term_value_subtract_lemma, 
int_formula_prop_eq_lemma, 
int_formula_prop_not_lemma, 
itermSubtract_wf, 
intformeq_wf, 
intformnot_wf, 
decidable__equal_int, 
top_wf, 
assert_of_lt_int, 
eqtt_to_assert, 
bool_wf, 
lt_int_wf, 
subtract_wf, 
le_wf, 
less_than_wf, 
ge_wf, 
int_formula_prop_wf, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_and_lemma, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
intformand_wf, 
full-omega-unsat, 
nat_properties, 
int-value-type, 
value-type-has-value, 
iff_weakening_equal, 
int_term_value_add_lemma, 
itermAdd_wf, 
true_wf, 
squash_wf, 
int_subtype_base, 
int_seg_wf, 
lelt_wf, 
decidable__lt, 
int_seg_cases, 
false_wf, 
int_seg_subtype, 
int_seg_properties, 
assert_of_le_int, 
le_int_wf, 
equal-wf-base, 
set_wf, 
member_wf
Rules used in proof : 
cut, 
dependent_set_memberEquality, 
cumulativity, 
instantiate, 
promote_hyp, 
imageElimination, 
baseClosed, 
imageMemberEquality, 
because_Cache, 
sqequalAxiom, 
isect_memberFormation, 
lessCases, 
productElimination, 
equalitySymmetry, 
equalityTransitivity, 
equalityElimination, 
unionElimination, 
axiomEquality, 
independent_pairFormation, 
sqequalRule, 
voidEquality, 
voidElimination, 
isect_memberEquality, 
dependent_functionElimination, 
intEquality, 
int_eqEquality, 
lambdaEquality, 
dependent_pairFormation, 
independent_functionElimination, 
approximateComputation, 
independent_isectElimination, 
natural_numberEquality, 
intWeakElimination, 
rename, 
setElimination, 
hypothesis, 
hypothesisEquality, 
thin, 
isectElimination, 
sqequalHypSubstitution, 
extract_by_obid, 
introduction, 
lambdaFormation, 
sqequalReflexivity, 
computationStep, 
sqequalTransitivity, 
sqequalSubstitution, 
addEquality, 
callbyvalueReduce, 
universeEquality, 
applyEquality, 
hypothesis_subsumption, 
closedConclusion, 
baseApply
Latex:
\mforall{}x:\mBbbZ{}.  (mccarthy91(x)  \mmember{}  \{m:\mBbbZ{}|  m  =  if  x  \mleq{}z  101  then  91  else  x  -  10  fi  \}  )
Date html generated:
2018_05_21-PM-00_30_40
Last ObjectModification:
2017_12_27-PM-06_46_58
Theory : int_2
Home
Index