Nuprl Lemma : insert-by-no-repeats
∀[T:Type]. ∀[eq,r:T ⟶ T ⟶ 𝔹].
  (∀[x:T]. ∀[L:T List].
     (no_repeats(T;insert-by(eq;r;x;L))) supposing (no_repeats(T;L) and sorted-by(λx,y. (↑(r x y));L))) supposing 
     (Linorder(T;a,b.↑(r a b)) and 
     (∀a,b:T.  (↑(eq a b) ⇐⇒ a = b ∈ T)))
Proof
Definitions occuring in Statement : 
insert-by: insert-by(eq;r;x;l), 
sorted-by: sorted-by(R;L), 
no_repeats: no_repeats(T;l), 
list: T List, 
linorder: Linorder(T;x,y.R[x; y]), 
assert: ↑b, 
bool: 𝔹, 
uimplies: b supposing a, 
uall: ∀[x:A]. B[x], 
all: ∀x:A. B[x], 
iff: P ⇐⇒ Q, 
apply: f a, 
lambda: λx.A[x], 
function: x:A ⟶ B[x], 
universe: Type, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
uimplies: b supposing a, 
so_lambda: λ2x.t[x], 
all: ∀x:A. B[x], 
prop: ℙ, 
so_apply: x[s], 
implies: P ⇒ Q, 
so_lambda: λ2x y.t[x; y], 
so_apply: x[s1;s2], 
insert-by: insert-by(eq;r;x;l), 
no_repeats: no_repeats(T;l), 
sorted-by: sorted-by(R;L), 
select: L[n], 
nil: [], 
it: ⋅, 
top: Top, 
so_lambda: so_lambda(x,y,z.t[x; y; z]), 
so_apply: x[s1;s2;s3], 
not: ¬A, 
false: False, 
nat: ℕ, 
ge: i ≥ j , 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
and: P ∧ Q, 
decidable: Dec(P), 
or: P ∨ Q, 
le: A ≤ B, 
subtype_rel: A ⊆r B, 
int_seg: {i..j-}, 
guard: {T}, 
lelt: i ≤ j < k, 
uiff: uiff(P;Q), 
cand: A c∧ B, 
bool: 𝔹, 
unit: Unit, 
btrue: tt, 
ifthenelse: if b then t else f fi , 
bfalse: ff, 
linorder: Linorder(T;x,y.R[x; y]), 
order: Order(T;x,y.R[x; y]), 
anti_sym: AntiSym(T;x,y.R[x; y])
Lemmas referenced : 
list_induction, 
isect_wf, 
sorted-by_wf, 
l_member_wf, 
assert_wf, 
no_repeats_wf, 
insert-by_wf, 
list_wf, 
no_repeats_witness, 
linorder_wf, 
all_wf, 
iff_wf, 
equal_wf, 
bool_wf, 
length_of_nil_lemma, 
stuck-spread, 
base_wf, 
list_ind_nil_lemma, 
length_of_cons_lemma, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformeq_wf, 
itermVar_wf, 
intformless_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
decidable__equal_int, 
int_formula_prop_wf, 
le_wf, 
equal-wf-base, 
int_subtype_base, 
select_wf, 
cons_wf, 
nil_wf, 
not_wf, 
nat_wf, 
less_than_wf, 
uall_wf, 
int_seg_wf, 
int_seg_properties, 
list_ind_cons_lemma, 
ifthenelse_wf, 
equal-wf-T-base, 
bnot_wf, 
no_repeats_cons, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot, 
sorted-by-cons, 
cons_member, 
l_all_iff, 
member-insert-by
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesisEquality, 
lambdaFormation, 
hypothesis, 
setElimination, 
rename, 
applyEquality, 
functionExtensionality, 
setEquality, 
dependent_functionElimination, 
independent_functionElimination, 
isect_memberEquality, 
equalityTransitivity, 
equalitySymmetry, 
functionEquality, 
universeEquality, 
baseClosed, 
independent_isectElimination, 
voidElimination, 
voidEquality, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
unionElimination, 
computeAll, 
dependent_set_memberEquality, 
productElimination, 
equalityElimination
Latex:
\mforall{}[T:Type].  \mforall{}[eq,r:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].
    (\mforall{}[x:T].  \mforall{}[L:T  List].
          (no\_repeats(T;insert-by(eq;r;x;L)))  supposing 
                (no\_repeats(T;L)  and 
                sorted-by(\mlambda{}x,y.  (\muparrow{}(r  x  y));L)))  supposing 
          (Linorder(T;a,b.\muparrow{}(r  a  b))  and 
          (\mforall{}a,b:T.    (\muparrow{}(eq  a  b)  \mLeftarrow{}{}\mRightarrow{}  a  =  b)))
Date html generated:
2017_04_17-AM-08_32_37
Last ObjectModification:
2017_02_27-PM-04_54_25
Theory : list_1
Home
Index