Nuprl Lemma : bag-map-equal
∀[T,A:Type].
  ∀f,g:T ⟶ A. ∀P:T ⟶ 𝔹.
    ((∀x:T. ((¬↑(P x)) 
⇒ ((f x) = (g x) ∈ A)))
    
⇒ (∀as:bag(T). ((↑null([x∈as|P x])) 
⇒ (bag-map(f;as) = bag-map(g;as) ∈ bag(A)))))
Proof
Definitions occuring in Statement : 
bag-filter: [x∈b|p[x]]
, 
bag-map: bag-map(f;bs)
, 
bag: bag(T)
, 
null: null(as)
, 
assert: ↑b
, 
bool: 𝔹
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
bag-null: bag-null(bs)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
bag: bag(T)
, 
quotient: x,y:A//B[x; y]
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
uimplies: b supposing a
, 
bag-filter: [x∈b|p[x]]
, 
bag-map: bag-map(f;bs)
, 
nat: ℕ
, 
ge: i ≥ j 
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
false: False
, 
not: ¬A
, 
top: Top
, 
uiff: uiff(P;Q)
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
cand: A c∧ B
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
le: A ≤ B
, 
guard: {T}
, 
rev_uimplies: rev_uimplies(P;Q)
Lemmas referenced : 
assert_wf, 
bag-null_wf, 
bag-filter_wf, 
bag_wf, 
all_wf, 
not_wf, 
equal_wf, 
bool_wf, 
bag-map_wf, 
list_wf, 
permutation_wf, 
equal-wf-base, 
list-subtype-bag, 
map_equal, 
select_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
less_than_wf, 
length_wf, 
nat_wf, 
assert_of_null, 
filter_wf5, 
l_member_wf, 
member_filter, 
select_member, 
lelt_wf, 
assert_functionality_wrt_uiff, 
eta_conv, 
null_nil_lemma, 
btrue_wf, 
member-implies-null-eq-bfalse, 
and_wf, 
null_wf, 
btrue_neq_bfalse
Rules used in proof : 
sqequalSubstitution, 
sqequalRule, 
sqequalReflexivity, 
sqequalTransitivity, 
computationStep, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
hypothesis, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
dependent_functionElimination, 
setEquality, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
lambdaEquality, 
functionEquality, 
axiomEquality, 
because_Cache, 
isect_memberEquality, 
independent_functionElimination, 
pointwiseFunctionalityForEquality, 
pertypeElimination, 
productElimination, 
equalityTransitivity, 
equalitySymmetry, 
rename, 
productEquality, 
independent_isectElimination, 
setElimination, 
unionElimination, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
voidElimination, 
voidEquality, 
independent_pairFormation, 
computeAll, 
dependent_set_memberEquality, 
applyLambdaEquality
Latex:
\mforall{}[T,A:Type].
    \mforall{}f,g:T  {}\mrightarrow{}  A.  \mforall{}P:T  {}\mrightarrow{}  \mBbbB{}.
        ((\mforall{}x:T.  ((\mneg{}\muparrow{}(P  x))  {}\mRightarrow{}  ((f  x)  =  (g  x))))
        {}\mRightarrow{}  (\mforall{}as:bag(T).  ((\muparrow{}null([x\mmember{}as|P  x]))  {}\mRightarrow{}  (bag-map(f;as)  =  bag-map(g;as)))))
Date html generated:
2017_10_01-AM-08_45_41
Last ObjectModification:
2017_07_26-PM-04_30_51
Theory : bags
Home
Index