Nuprl Lemma : bag-maximals-not-max
∀[T:Type]. ∀[b:bag(T)]. ∀[R:T ⟶ T ⟶ 𝔹]. ∀[x,y:T].
  (¬↑(R x y)) supposing 
     (y ↓∈ bag-maximals(b;R) and 
     x ↓∈ bag-maximals(b;R) and 
     (∀x,y:T.  ((↑(R x y)) 
⇒ (↑(R y x)) 
⇒ (x = y ∈ T))) and 
     (∀x:T. (¬↑(R x x))))
Proof
Definitions occuring in Statement : 
bag-member: x ↓∈ bs
, 
bag-maximals: bag-maximals(bg;R)
, 
bag: bag(T)
, 
assert: ↑b
, 
bool: 𝔹
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
not: ¬A
, 
implies: P 
⇒ Q
, 
bag-maximals: bag-maximals(bg;R)
, 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
squash: ↓T
, 
false: False
, 
exists: ∃x:A. B[x]
, 
prop: ℙ
, 
bag-member: x ↓∈ bs
, 
all: ∀x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
bag-maximal?: bag-maximal?(bg;x;R)
, 
bag-accum: bag-accum(v,x.f[v; x];init;bs)
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
bool: 𝔹
, 
unit: Unit
, 
it: ⋅
, 
btrue: tt
, 
band: p ∧b q
, 
ifthenelse: if b then t else f fi 
, 
bfalse: ff
, 
true: True
, 
guard: {T}
, 
subtype_rel: A ⊆r B
, 
top: Top
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
assert: ↑b
, 
rev_implies: P 
⇐ Q
, 
sq_type: SQType(T)
Lemmas referenced : 
bag-member-filter, 
bag-maximal?_wf, 
bag_to_squash_list, 
assert_wf, 
bag-member_wf, 
l_member_decomp, 
assert_functionality_wrt_uiff, 
list_accum_wf, 
bool_wf, 
btrue_wf, 
band_wf, 
append_wf, 
cons_wf, 
nil_wf, 
squash_wf, 
true_wf, 
list_wf, 
eqtt_to_assert, 
equal_wf, 
subtype_rel_list, 
top_wf, 
list_accum_nil_lemma, 
decidable__assert, 
bag-maximals_wf, 
all_wf, 
not_wf, 
bag_wf, 
list_accum_append, 
list_accum_cons, 
iff_imp_equal_bool, 
bfalse_wf, 
false_wf, 
subtype_base_sq, 
bool_subtype_base, 
band-bfalse, 
list_accum_invariant, 
not_assert_elim, 
and_wf, 
assert_elim, 
btrue_neq_bfalse
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
sqequalHypSubstitution, 
cut, 
introduction, 
extract_by_obid, 
isectElimination, 
thin, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
cumulativity, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
hypothesis, 
productElimination, 
independent_isectElimination, 
imageElimination, 
promote_hyp, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
rename, 
dependent_functionElimination, 
independent_functionElimination, 
equalityTransitivity, 
functionEquality, 
universeEquality, 
unionElimination, 
equalityElimination, 
natural_numberEquality, 
imageMemberEquality, 
baseClosed, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
isect_memberFormation, 
independent_pairFormation, 
instantiate, 
addLevel, 
levelHypothesis, 
dependent_set_memberEquality, 
setElimination
Latex:
\mforall{}[T:Type].  \mforall{}[b:bag(T)].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x,y:T].
    (\mneg{}\muparrow{}(R  x  y))  supposing 
          (y  \mdownarrow{}\mmember{}  bag-maximals(b;R)  and 
          x  \mdownarrow{}\mmember{}  bag-maximals(b;R)  and 
          (\mforall{}x,y:T.    ((\muparrow{}(R  x  y))  {}\mRightarrow{}  (\muparrow{}(R  y  x))  {}\mRightarrow{}  (x  =  y)))  and 
          (\mforall{}x:T.  (\mneg{}\muparrow{}(R  x  x))))
Date html generated:
2017_10_01-AM-08_58_46
Last ObjectModification:
2017_07_26-PM-04_40_37
Theory : bags
Home
Index