Nuprl Lemma : bag-maximals-not-max

[T:Type]. ∀[b:bag(T)]. ∀[R:T ⟶ T ⟶ 𝔹]. ∀[x,y:T].
  (¬↑(R y)) supposing 
     (y ↓∈ bag-maximals(b;R) and 
     x ↓∈ bag-maximals(b;R) and 
     (∀x,y:T.  ((↑(R y))  (↑(R x))  (x y ∈ T))) and 
     (∀x:T. (¬↑(R x))))


Proof




Definitions occuring in Statement :  bag-member: x ↓∈ bs bag-maximals: bag-maximals(bg;R) bag: bag(T) assert: b bool: 𝔹 uimplies: supposing a uall: [x:A]. B[x] all: x:A. B[x] not: ¬A implies:  Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  not: ¬A implies:  Q bag-maximals: bag-maximals(bg;R) uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] so_apply: x[s] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a squash: T false: False exists: x:A. B[x] prop: bag-member: x ↓∈ bs all: x:A. B[x] iff: ⇐⇒ Q bag-maximal?: bag-maximal?(bg;x;R) bag-accum: bag-accum(v,x.f[v; x];init;bs) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  bfalse: ff true: True guard: {T} subtype_rel: A ⊆B top: Top decidable: Dec(P) or: P ∨ Q assert: b rev_implies:  Q sq_type: SQType(T)
Lemmas referenced :  bag-member-filter bag-maximal?_wf bag_to_squash_list assert_wf bag-member_wf l_member_decomp assert_functionality_wrt_uiff list_accum_wf bool_wf btrue_wf band_wf append_wf cons_wf nil_wf squash_wf true_wf list_wf eqtt_to_assert equal_wf subtype_rel_list top_wf list_accum_nil_lemma decidable__assert bag-maximals_wf all_wf not_wf bag_wf list_accum_append list_accum_cons iff_imp_equal_bool bfalse_wf false_wf subtype_base_sq bool_subtype_base band-bfalse list_accum_invariant not_assert_elim and_wf assert_elim btrue_neq_bfalse
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation sqequalHypSubstitution cut introduction extract_by_obid isectElimination thin because_Cache sqequalRule lambdaEquality cumulativity hypothesisEquality functionExtensionality applyEquality hypothesis productElimination independent_isectElimination imageElimination promote_hyp equalitySymmetry hyp_replacement applyLambdaEquality rename dependent_functionElimination independent_functionElimination equalityTransitivity functionEquality universeEquality unionElimination equalityElimination natural_numberEquality imageMemberEquality baseClosed isect_memberEquality voidElimination voidEquality isect_memberFormation independent_pairFormation instantiate addLevel levelHypothesis dependent_set_memberEquality setElimination

Latex:
\mforall{}[T:Type].  \mforall{}[b:bag(T)].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[x,y:T].
    (\mneg{}\muparrow{}(R  x  y))  supposing 
          (y  \mdownarrow{}\mmember{}  bag-maximals(b;R)  and 
          x  \mdownarrow{}\mmember{}  bag-maximals(b;R)  and 
          (\mforall{}x,y:T.    ((\muparrow{}(R  x  y))  {}\mRightarrow{}  (\muparrow{}(R  y  x))  {}\mRightarrow{}  (x  =  y)))  and 
          (\mforall{}x:T.  (\mneg{}\muparrow{}(R  x  x))))



Date html generated: 2017_10_01-AM-08_58_46
Last ObjectModification: 2017_07_26-PM-04_40_37

Theory : bags


Home Index