Nuprl Lemma : bag-count-filter
∀[T:Type]. ∀[p:T ⟶ 𝔹]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[bs:bag(T)].  ((#x in [t∈bs|p[t]]) ≤ (#x in bs))
Proof
Definitions occuring in Statement : 
bag-count: (#x in bs), 
bag-filter: [x∈b|p[x]], 
bag: bag(T), 
deq: EqDecider(T), 
bool: 𝔹, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
le: A ≤ B, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
member: t ∈ T, 
sq_stable: SqStable(P), 
implies: P ⇒ Q, 
squash: ↓T, 
so_lambda: λ2x.t[x], 
so_apply: x[s], 
subtype_rel: A ⊆r B, 
prop: ℙ, 
uimplies: b supposing a, 
all: ∀x:A. B[x], 
nat: ℕ, 
exists: ∃x:A. B[x], 
bag-filter: [x∈b|p[x]], 
bag-size: #(bs), 
top: Top, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
btrue: tt, 
band: p ∧b q, 
ifthenelse: if b then t else f fi , 
uiff: uiff(P;Q), 
and: P ∧ Q, 
deq: EqDecider(T), 
bfalse: ff, 
l_all: (∀x∈L.P[x]), 
int_seg: {i..j-}, 
guard: {T}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
or: P ∨ Q, 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
false: False, 
not: ¬A, 
less_than: a < b, 
iff: P ⇐⇒ Q, 
rev_implies: P ⇐ Q, 
eqof: eqof(d)
Lemmas referenced : 
sq_stable__le, 
bag_wf, 
deq_wf, 
bool_wf, 
bag-filter_wf, 
subtype_rel_bag, 
assert_wf, 
bag-count_wf, 
nat_wf, 
equal_wf, 
bag_to_squash_list, 
le_wf, 
list-subtype-bag, 
bag-count-sqequal, 
filter-filter, 
length-filter-le, 
eqtt_to_assert, 
select_wf, 
int_seg_properties, 
length_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
int_seg_wf, 
band_wf, 
eqof_wf, 
l_member_wf, 
l_all_wf2, 
l_all_functionality, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_band, 
safe-assert-deq
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesis, 
independent_functionElimination, 
sqequalRule, 
imageMemberEquality, 
hypothesisEquality, 
baseClosed, 
imageElimination, 
cumulativity, 
functionEquality, 
universeEquality, 
lambdaEquality, 
applyEquality, 
functionExtensionality, 
setEquality, 
independent_isectElimination, 
setElimination, 
rename, 
because_Cache, 
lambdaFormation, 
equalityTransitivity, 
equalitySymmetry, 
dependent_functionElimination, 
productElimination, 
promote_hyp, 
hyp_replacement, 
applyLambdaEquality, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
unionElimination, 
equalityElimination, 
productEquality, 
natural_numberEquality, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
independent_pairFormation, 
computeAll, 
addLevel, 
impliesFunctionality
Latex:
\mforall{}[T:Type].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[bs:bag(T)].
    ((\#x  in  [t\mmember{}bs|p[t]])  \mleq{}  (\#x  in  bs))
Date html generated:
2018_05_21-PM-09_46_09
Last ObjectModification:
2017_07_26-PM-06_29_57
Theory : bags_2
Home
Index