Nuprl Lemma : bag-count-filter

[T:Type]. ∀[p:T ⟶ 𝔹]. ∀[eq:EqDecider(T)]. ∀[x:T]. ∀[bs:bag(T)].  ((#x in [t∈bs|p[t]]) ≤ (#x in bs))


Proof




Definitions occuring in Statement :  bag-count: (#x in bs) bag-filter: [x∈b|p[x]] bag: bag(T) deq: EqDecider(T) bool: 𝔹 uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B function: x:A ⟶ B[x] universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T sq_stable: SqStable(P) implies:  Q squash: T so_lambda: λ2x.t[x] so_apply: x[s] subtype_rel: A ⊆B prop: uimplies: supposing a all: x:A. B[x] nat: exists: x:A. B[x] bag-filter: [x∈b|p[x]] bag-size: #(bs) top: Top bool: 𝔹 unit: Unit it: btrue: tt band: p ∧b q ifthenelse: if then else fi  uiff: uiff(P;Q) and: P ∧ Q deq: EqDecider(T) bfalse: ff l_all: (∀x∈L.P[x]) int_seg: {i..j-} guard: {T} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q satisfiable_int_formula: satisfiable_int_formula(fmla) false: False not: ¬A less_than: a < b iff: ⇐⇒ Q rev_implies:  Q eqof: eqof(d)
Lemmas referenced :  sq_stable__le bag_wf deq_wf bool_wf bag-filter_wf subtype_rel_bag assert_wf bag-count_wf nat_wf equal_wf bag_to_squash_list le_wf list-subtype-bag bag-count-sqequal filter-filter length-filter-le eqtt_to_assert select_wf int_seg_properties length_wf decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_wf decidable__lt intformless_wf int_formula_prop_less_lemma int_seg_wf band_wf eqof_wf l_member_wf l_all_wf2 l_all_functionality iff_transitivity iff_weakening_uiff assert_of_band safe-assert-deq
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin hypothesis independent_functionElimination sqequalRule imageMemberEquality hypothesisEquality baseClosed imageElimination cumulativity functionEquality universeEquality lambdaEquality applyEquality functionExtensionality setEquality independent_isectElimination setElimination rename because_Cache lambdaFormation equalityTransitivity equalitySymmetry dependent_functionElimination productElimination promote_hyp hyp_replacement applyLambdaEquality isect_memberEquality voidElimination voidEquality unionElimination equalityElimination productEquality natural_numberEquality dependent_pairFormation int_eqEquality intEquality independent_pairFormation computeAll addLevel impliesFunctionality

Latex:
\mforall{}[T:Type].  \mforall{}[p:T  {}\mrightarrow{}  \mBbbB{}].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x:T].  \mforall{}[bs:bag(T)].
    ((\#x  in  [t\mmember{}bs|p[t]])  \mleq{}  (\#x  in  bs))



Date html generated: 2018_05_21-PM-09_46_09
Last ObjectModification: 2017_07_26-PM-06_29_57

Theory : bags_2


Home Index