Nuprl Lemma : bag-count-rep

[T:Type]. ∀[n:ℕ]. ∀[eq:EqDecider(T)]. ∀[x,y:T].  ((#x in bag-rep(n;y)) if eq then else fi  ∈ ℤ)


Proof




Definitions occuring in Statement :  bag-count: (#x in bs) bag-rep: bag-rep(n;x) deq: EqDecider(T) nat: ifthenelse: if then else fi  uall: [x:A]. B[x] apply: a natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A all: x:A. B[x] top: Top and: P ∧ Q prop: bag-rep: bag-rep(n;x) eq_int: (i =z j) subtract: m ifthenelse: if then else fi  btrue: tt deq: EqDecider(T) bool: 𝔹 unit: Unit it: uiff: uiff(P;Q) eqof: eqof(d) bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b decidable: Dec(P) cons-bag: x.b bag-count: (#x in bs) count: count(P;L) nequal: a ≠ b ∈  subtype_rel: A ⊆B true: True squash: T iff: ⇐⇒ Q rev_implies:  Q
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf deq_wf primrec-unroll bool_wf eqtt_to_assert safe-assert-deq bag-count-empty eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot decidable__le subtract_wf intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma eq_int_wf assert_of_eq_int intformeq_wf int_formula_prop_eq_lemma neg_assert_of_eq_int reduce_cons_lemma nat_wf ifthenelse_wf bag-count_wf bag-rep_wf le_wf list-subtype-bag decidable__equal_int itermAdd_wf int_term_value_add_lemma squash_wf true_wf add_functionality_wrt_eq iff_weakening_equal
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination axiomEquality cumulativity applyEquality unionElimination equalityElimination because_Cache productElimination equalityTransitivity equalitySymmetry promote_hyp instantiate universeEquality dependent_set_memberEquality imageElimination imageMemberEquality baseClosed

Latex:
\mforall{}[T:Type].  \mforall{}[n:\mBbbN{}].  \mforall{}[eq:EqDecider(T)].  \mforall{}[x,y:T].
    ((\#x  in  bag-rep(n;y))  =  if  eq  x  y  then  n  else  0  fi  )



Date html generated: 2018_05_21-PM-09_46_12
Last ObjectModification: 2017_07_26-PM-06_29_57

Theory : bags_2


Home Index