Nuprl Lemma : fpf-contains-union-join-right2
∀[A,V:Type]. ∀[B:A ⟶ Type].
  ∀eq:EqDecider(A). ∀f,h,g:a:A fp-> B[a] List. ∀R:(V List) ⟶ V ⟶ 𝔹.
    fpf-union-compatible(A;V;x.B[x];eq;R;f;g) ⇒ h ⊆⊆ g ⇒ h ⊆⊆ fpf-union-join(eq;R;f;g) 
    supposing fpf-single-valued(A;eq;x.B[x];V;g) 
  supposing ∀a:A. (B[a] ⊆r V)
Proof
Definitions occuring in Statement : 
fpf-union-join: fpf-union-join(eq;R;f;g), 
fpf-contains: f ⊆⊆ g, 
fpf-single-valued: fpf-single-valued(A;eq;x.B[x];V;g), 
fpf-union-compatible: fpf-union-compatible(A;C;x.B[x];eq;R;f;g), 
fpf: a:A fp-> B[a], 
list: T List, 
deq: EqDecider(T), 
bool: 𝔹, 
uimplies: b supposing a, 
subtype_rel: A ⊆r B, 
uall: ∀[x:A]. B[x], 
so_apply: x[s], 
all: ∀x:A. B[x], 
implies: P ⇒ Q, 
function: x:A ⟶ B[x], 
universe: Type
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x], 
uimplies: b supposing a, 
member: t ∈ T, 
all: ∀x:A. B[x], 
subtype_rel: A ⊆r B, 
fpf-single-valued: fpf-single-valued(A;eq;x.B[x];V;g), 
implies: P ⇒ Q, 
prop: ℙ, 
so_apply: x[s], 
so_lambda: λ2x.t[x], 
top: Top, 
fpf-contains: f ⊆⊆ g, 
cand: A c∧ B, 
iff: P ⇐⇒ Q, 
and: P ∧ Q, 
rev_implies: P ⇐ Q, 
sq_type: SQType(T), 
guard: {T}, 
assert: ↑b, 
ifthenelse: if b then t else f fi , 
btrue: tt, 
or: P ∨ Q, 
true: True, 
l_contains: A ⊆ B, 
l_all: (∀x∈L.P[x]), 
int_seg: {i..j-}, 
lelt: i ≤ j < k, 
decidable: Dec(P), 
satisfiable_int_formula: satisfiable_int_formula(fmla), 
exists: ∃x:A. B[x], 
false: False, 
not: ¬A, 
less_than: a < b, 
squash: ↓T, 
fpf-cap: f(x)?z, 
bool: 𝔹, 
unit: Unit, 
it: ⋅, 
uiff: uiff(P;Q), 
bfalse: ff
Lemmas referenced : 
equal_wf, 
l_member_wf, 
fpf-ap_wf, 
list_wf, 
assert_wf, 
fpf-dom_wf, 
subtype-fpf2, 
top_wf, 
fpf-contains_wf, 
fpf-union-compatible_wf, 
fpf-single-valued_wf, 
bool_wf, 
fpf_wf, 
deq_wf, 
all_wf, 
subtype_rel_wf, 
fpf-union-join-dom, 
assert_elim, 
subtype_base_sq, 
bool_subtype_base, 
fpf-union-contains2, 
fpf-union-join-ap, 
l_all_iff, 
fpf-cap_wf, 
nil_wf, 
fpf-union_wf, 
subtype_rel_dep_function, 
subtype_rel_list, 
subtype_rel_self, 
select_wf, 
int_seg_properties, 
length_wf, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformless_wf, 
int_formula_prop_less_lemma, 
int_seg_wf, 
equal-wf-T-base, 
bnot_wf, 
not_wf, 
eqtt_to_assert, 
uiff_transitivity, 
eqff_to_assert, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
cut, 
introduction, 
sqequalRule, 
sqequalHypSubstitution, 
lambdaEquality, 
dependent_functionElimination, 
thin, 
hypothesisEquality, 
axiomEquality, 
hypothesis, 
rename, 
lambdaFormation, 
extract_by_obid, 
isectElimination, 
cumulativity, 
applyEquality, 
functionExtensionality, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
because_Cache, 
independent_functionElimination, 
independent_pairFormation, 
functionEquality, 
universeEquality, 
productElimination, 
instantiate, 
equalityTransitivity, 
equalitySymmetry, 
inrFormation, 
natural_numberEquality, 
setElimination, 
setEquality, 
unionElimination, 
dependent_pairFormation, 
int_eqEquality, 
intEquality, 
computeAll, 
imageElimination, 
baseClosed, 
equalityElimination
Latex:
\mforall{}[A,V:Type].  \mforall{}[B:A  {}\mrightarrow{}  Type].
    \mforall{}eq:EqDecider(A).  \mforall{}f,h,g:a:A  fp->  B[a]  List.  \mforall{}R:(V  List)  {}\mrightarrow{}  V  {}\mrightarrow{}  \mBbbB{}.
        fpf-union-compatible(A;V;x.B[x];eq;R;f;g)  {}\mRightarrow{}  h  \msubseteq{}\msubseteq{}  g  {}\mRightarrow{}  h  \msubseteq{}\msubseteq{}  fpf-union-join(eq;R;f;g) 
        supposing  fpf-single-valued(A;eq;x.B[x];V;g) 
    supposing  \mforall{}a:A.  (B[a]  \msubseteq{}r  V)
Date html generated:
2018_05_21-PM-09_23_54
Last ObjectModification:
2018_02_09-AM-10_19_27
Theory : finite!partial!functions
Home
Index