Nuprl Lemma : closure-well-founded-total

well-founded, one-one, decidable relation
which is "retracable" (in that everything
has only finitely many predecessors)
with at most one minimal element has the
property that its transitive closure totally
orders its field.⋅

[T:Type]. ∀[R:T ⟶ T ⟶ ℙ].
  (WellFnd{i}(T;x,y.R y)
   (∀x,y:T.  Dec(R y))
   (∀y:T. ∃L:T List. ∀x:T. ((R y)  (x ∈ L)))
   (∀a,b:T.  (((R^*) b) ∨ ((R^*) a))) supposing 
        ((∀y,z:T.  ((∀x:T. ((¬(R y)) ∧ (R z))))  (y z ∈ T))) and 
        one-one(T;T;R)))


Proof




Definitions occuring in Statement :  one-one: one-one(A;B;R) l_member: (x ∈ l) list: List rel_star: R^* wellfounded: WellFnd{i}(A;x,y.R[x; y]) decidable: Dec(P) uimplies: supposing a uall: [x:A]. B[x] prop: all: x:A. B[x] exists: x:A. B[x] not: ¬A implies:  Q or: P ∨ Q and: P ∧ Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  guard: {T} so_apply: x[s1;s2] so_lambda: λ2y.t[x; y] not: ¬A cand: c∧ B exists: x:A. B[x] so_apply: x[s] and: P ∧ Q so_lambda: λ2x.t[x] prop: subtype_rel: A ⊆B all: x:A. B[x] one-one: one-one(A;B;R) member: t ∈ T uimplies: supposing a implies:  Q uall: [x:A]. B[x] rel_star: R^* nat: decidable: Dec(P) or: P ∨ Q ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) false: False infix_ap: y iff: ⇐⇒ Q subtract: m
Lemmas referenced :  wellfounded_wf decidable_wf l_member_wf list_wf exists_wf one-one_wf equal_wf rel_star_wf wellfounded-minimal-field not_wf all_wf decidable__le subtract_wf nat_properties full-omega-unsat intformand_wf intformnot_wf intformle_wf itermConstant_wf itermSubtract_wf itermVar_wf istype-int int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_subtract_lemma int_term_value_var_lemma int_formula_prop_wf istype-le rel_exp_wf subtype_rel_self rel-exp-add-iff minus-one-mul add-swap add-mul-special zero-mul add-zero rel_exp-one-one add-commutes add-associates zero-add
Rules used in proof :  functionEquality applyLambdaEquality hyp_replacement equalitySymmetry independent_pairFormation productElimination independent_functionElimination productEquality isectElimination extract_by_obid rename because_Cache universeEquality cumulativity functionExtensionality applyEquality hypothesis axiomEquality hypothesisEquality thin dependent_functionElimination lambdaEquality sqequalHypSubstitution sqequalRule introduction cut lambdaFormation isect_memberFormation sqequalReflexivity computationStep sqequalTransitivity sqequalSubstitution setElimination unionElimination inlFormation_alt dependent_pairFormation_alt dependent_set_memberEquality_alt natural_numberEquality independent_isectElimination approximateComputation lambdaEquality_alt int_eqEquality Error :memTop,  universeIsType voidElimination productIsType inhabitedIsType instantiate inrFormation_alt

Latex:
\mforall{}[T:Type].  \mforall{}[R:T  {}\mrightarrow{}  T  {}\mrightarrow{}  \mBbbP{}].
    (WellFnd\{i\}(T;x,y.R  x  y)
    {}\mRightarrow{}  (\mforall{}x,y:T.    Dec(R  x  y))
    {}\mRightarrow{}  (\mforall{}y:T.  \mexists{}L:T  List.  \mforall{}x:T.  ((R  x  y)  {}\mRightarrow{}  (x  \mmember{}  L)))
    {}\mRightarrow{}  (\mforall{}a,b:T.    ((rel\_star(T;  R)  a  b)  \mvee{}  (rel\_star(T;  R)  b  a)))  supposing 
                ((\mforall{}y,z:T.    ((\mforall{}x:T.  ((\mneg{}(R  x  y))  \mwedge{}  (\mneg{}(R  x  z))))  {}\mRightarrow{}  (y  =  z)))  and 
                one-one(T;T;R)))



Date html generated: 2020_05_20-AM-08_10_00
Last ObjectModification: 2020_01_28-PM-00_09_22

Theory : general


Home Index