Nuprl Lemma : finite-partition-property
∀k:ℕ. ∀f:ℕ ⟶ ℕk.  (¬¬(∃i:ℕk. ∀n:ℕ. (¬¬(∃m:ℕ. (n < m ∧ ((f m) = i ∈ ℤ))))))
Proof
Definitions occuring in Statement : 
int_seg: {i..j-}
, 
nat: ℕ
, 
less_than: a < b
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
and: P ∧ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
false: False
, 
member: t ∈ T
, 
prop: ℙ
, 
uall: ∀[x:A]. B[x]
, 
nat: ℕ
, 
so_lambda: λ2x.t[x]
, 
and: P ∧ Q
, 
subtype_rel: A ⊆r B
, 
int_seg: {i..j-}
, 
so_apply: x[s]
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
exists: ∃x:A. B[x]
, 
le: A ≤ B
, 
less_than': less_than'(a;b)
, 
guard: {T}
, 
lelt: i ≤ j < k
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
top: Top
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
less_than: a < b
, 
ge: i ≥ j 
, 
cand: A c∧ B
, 
sq_type: SQType(T)
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
bfalse: ff
Lemmas referenced : 
all_wf, 
int_seg_wf, 
not_wf, 
nat_wf, 
exists_wf, 
less_than_wf, 
equal_wf, 
not_over_exists, 
finite-double-negation-shift, 
false_wf, 
subtract_wf, 
set_wf, 
primrec-wf2, 
le_wf, 
int_seg_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
itermConstant_wf, 
intformle_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_le_lemma, 
int_formula_prop_wf, 
decidable__lt, 
intformnot_wf, 
itermSubtract_wf, 
int_formula_prop_not_lemma, 
int_term_value_subtract_lemma, 
lelt_wf, 
nat_properties, 
decidable__le, 
ifthenelse_wf, 
lt_int_wf, 
assert_wf, 
bnot_wf, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert_of_lt_int, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
equal-wf-T-base, 
int_subtype_base, 
itermAdd_wf, 
int_term_value_add_lemma
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
lambdaFormation, 
cut, 
thin, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
natural_numberEquality, 
setElimination, 
rename, 
because_Cache, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
productEquality, 
intEquality, 
applyEquality, 
functionExtensionality, 
hypothesisEquality, 
addLevel, 
impliesFunctionality, 
productElimination, 
independent_isectElimination, 
independent_functionElimination, 
voidElimination, 
functionEquality, 
allFunctionality, 
levelHypothesis, 
dependent_functionElimination, 
equalityTransitivity, 
equalitySymmetry, 
instantiate, 
dependent_pairFormation, 
dependent_set_memberEquality, 
independent_pairFormation, 
int_eqEquality, 
isect_memberEquality, 
voidEquality, 
computeAll, 
unionElimination, 
promote_hyp, 
cumulativity, 
baseApply, 
closedConclusion, 
baseClosed, 
addEquality
Latex:
\mforall{}k:\mBbbN{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}k.    (\mneg{}\mneg{}(\mexists{}i:\mBbbN{}k.  \mforall{}n:\mBbbN{}.  (\mneg{}\mneg{}(\mexists{}m:\mBbbN{}.  (n  <  m  \mwedge{}  ((f  m)  =  i))))))
Date html generated:
2017_10_01-AM-09_10_39
Last ObjectModification:
2017_07_26-PM-04_46_59
Theory : general
Home
Index