Nuprl Lemma : finite-partition-property

k:ℕ. ∀f:ℕ ⟶ ℕk.  (¬¬(∃i:ℕk. ∀n:ℕ(¬¬(∃m:ℕ(n < m ∧ ((f m) i ∈ ℤ))))))


Proof




Definitions occuring in Statement :  int_seg: {i..j-} nat: less_than: a < b all: x:A. B[x] exists: x:A. B[x] not: ¬A and: P ∧ Q apply: a function: x:A ⟶ B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  all: x:A. B[x] not: ¬A implies:  Q false: False member: t ∈ T prop: uall: [x:A]. B[x] nat: so_lambda: λ2x.t[x] and: P ∧ Q subtype_rel: A ⊆B int_seg: {i..j-} so_apply: x[s] uiff: uiff(P;Q) uimplies: supposing a exists: x:A. B[x] le: A ≤ B less_than': less_than'(a;b) guard: {T} lelt: i ≤ j < k satisfiable_int_formula: satisfiable_int_formula(fmla) top: Top decidable: Dec(P) or: P ∨ Q less_than: a < b ge: i ≥  cand: c∧ B sq_type: SQType(T) ifthenelse: if then else fi  btrue: tt iff: ⇐⇒ Q rev_implies:  Q bfalse: ff
Lemmas referenced :  all_wf int_seg_wf not_wf nat_wf exists_wf less_than_wf equal_wf not_over_exists finite-double-negation-shift false_wf subtract_wf set_wf primrec-wf2 le_wf int_seg_properties satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf itermConstant_wf intformle_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_term_value_constant_lemma int_formula_prop_le_lemma int_formula_prop_wf decidable__lt intformnot_wf itermSubtract_wf int_formula_prop_not_lemma int_term_value_subtract_lemma lelt_wf nat_properties decidable__le ifthenelse_wf lt_int_wf assert_wf bnot_wf bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_lt_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot decidable__equal_int intformeq_wf int_formula_prop_eq_lemma equal-wf-T-base int_subtype_base itermAdd_wf int_term_value_add_lemma
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity lambdaFormation cut thin introduction extract_by_obid sqequalHypSubstitution isectElimination natural_numberEquality setElimination rename because_Cache hypothesis sqequalRule lambdaEquality productEquality intEquality applyEquality functionExtensionality hypothesisEquality addLevel impliesFunctionality productElimination independent_isectElimination independent_functionElimination voidElimination functionEquality allFunctionality levelHypothesis dependent_functionElimination equalityTransitivity equalitySymmetry instantiate dependent_pairFormation dependent_set_memberEquality independent_pairFormation int_eqEquality isect_memberEquality voidEquality computeAll unionElimination promote_hyp cumulativity baseApply closedConclusion baseClosed addEquality

Latex:
\mforall{}k:\mBbbN{}.  \mforall{}f:\mBbbN{}  {}\mrightarrow{}  \mBbbN{}k.    (\mneg{}\mneg{}(\mexists{}i:\mBbbN{}k.  \mforall{}n:\mBbbN{}.  (\mneg{}\mneg{}(\mexists{}m:\mBbbN{}.  (n  <  m  \mwedge{}  ((f  m)  =  i))))))



Date html generated: 2017_10_01-AM-09_10_39
Last ObjectModification: 2017_07_26-PM-04_46_59

Theory : general


Home Index