Nuprl Lemma : fun-connected-iff-fun_exp
∀[T:Type]. ∀f:T ⟶ T. ((∀x:T. Dec((f x) = x ∈ T)) 
⇒ (∀x,y:T.  (x is f*(y) 
⇐⇒ ∃n:ℕ. (x = (f^n y) ∈ T))))
Proof
Definitions occuring in Statement : 
fun-connected: y is f*(x)
, 
fun_exp: f^n
, 
nat: ℕ
, 
decidable: Dec(P)
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
exists: ∃x:A. B[x]
, 
iff: P 
⇐⇒ Q
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
implies: P 
⇒ Q
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
member: t ∈ T
, 
prop: ℙ
, 
rev_implies: P 
⇐ Q
, 
so_lambda: λ2x.t[x]
, 
so_apply: x[s]
, 
fun-connected: y is f*(x)
, 
exists: ∃x:A. B[x]
, 
fun-path: y=f*(x) via L
, 
select: L[n]
, 
uimplies: b supposing a
, 
nil: []
, 
it: ⋅
, 
so_lambda: λ2x y.t[x; y]
, 
top: Top
, 
so_apply: x[s1;s2]
, 
subtract: n - m
, 
less_than: a < b
, 
squash: ↓T
, 
less_than': less_than'(a;b)
, 
false: False
, 
uiff: uiff(P;Q)
, 
guard: {T}
, 
not: ¬A
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
nat: ℕ
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
le: A ≤ B
Lemmas referenced : 
fun-connected_wf, 
exists_wf, 
nat_wf, 
equal_wf, 
fun_exp_wf, 
all_wf, 
decidable_wf, 
list_induction, 
fun-path_wf, 
list_wf, 
length_of_nil_lemma, 
stuck-spread, 
base_wf, 
nil_wf, 
fun-path-cons, 
isect_wf, 
less_than_wf, 
length_wf, 
not_wf, 
decidable__lt, 
cons_wf, 
nat_properties, 
decidable__le, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformnot_wf, 
intformle_wf, 
itermConstant_wf, 
itermAdd_wf, 
itermVar_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_not_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_add_lemma, 
int_term_value_var_lemma, 
int_formula_prop_wf, 
le_wf, 
fun_exp_add1, 
false_wf, 
fun_exp0_lemma, 
fun-connected-test2, 
subtract_wf, 
itermSubtract_wf, 
intformless_wf, 
int_term_value_subtract_lemma, 
int_formula_prop_less_lemma, 
set_wf, 
primrec-wf2, 
subtract-add-cancel, 
fun-connected-step, 
fun-connected_transitivity
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
lambdaFormation, 
independent_pairFormation, 
cut, 
introduction, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
cumulativity, 
hypothesisEquality, 
functionExtensionality, 
applyEquality, 
hypothesis, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
universeEquality, 
productElimination, 
independent_functionElimination, 
baseClosed, 
independent_isectElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
imageElimination, 
because_Cache, 
rename, 
equalitySymmetry, 
hyp_replacement, 
applyLambdaEquality, 
natural_numberEquality, 
productEquality, 
dependent_functionElimination, 
unionElimination, 
dependent_pairFormation, 
dependent_set_memberEquality, 
addEquality, 
setElimination, 
int_eqEquality, 
intEquality, 
computeAll
Latex:
\mforall{}[T:Type].  \mforall{}f:T  {}\mrightarrow{}  T.  ((\mforall{}x:T.  Dec((f  x)  =  x))  {}\mRightarrow{}  (\mforall{}x,y:T.    (x  is  f*(y)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}.  (x  =  (f\^{}n  y)))))
Date html generated:
2018_05_21-PM-07_45_39
Last ObjectModification:
2017_07_26-PM-05_23_12
Theory : general
Home
Index