Nuprl Lemma : fun-connected-iff-fun_exp

[T:Type]. ∀f:T ⟶ T. ((∀x:T. Dec((f x) x ∈ T))  (∀x,y:T.  (x is f*(y) ⇐⇒ ∃n:ℕ(x (f^n y) ∈ T))))


Proof




Definitions occuring in Statement :  fun-connected: is f*(x) fun_exp: f^n nat: decidable: Dec(P) uall: [x:A]. B[x] all: x:A. B[x] exists: x:A. B[x] iff: ⇐⇒ Q implies:  Q apply: a function: x:A ⟶ B[x] universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] all: x:A. B[x] implies:  Q iff: ⇐⇒ Q and: P ∧ Q member: t ∈ T prop: rev_implies:  Q so_lambda: λ2x.t[x] so_apply: x[s] fun-connected: is f*(x) exists: x:A. B[x] fun-path: y=f*(x) via L select: L[n] uimplies: supposing a nil: [] it: so_lambda: λ2y.t[x; y] top: Top so_apply: x[s1;s2] subtract: m less_than: a < b squash: T less_than': less_than'(a;b) false: False uiff: uiff(P;Q) guard: {T} not: ¬A decidable: Dec(P) or: P ∨ Q nat: ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) le: A ≤ B
Lemmas referenced :  fun-connected_wf exists_wf nat_wf equal_wf fun_exp_wf all_wf decidable_wf list_induction fun-path_wf list_wf length_of_nil_lemma stuck-spread base_wf nil_wf fun-path-cons isect_wf less_than_wf length_wf not_wf decidable__lt cons_wf nat_properties decidable__le satisfiable-full-omega-tt intformand_wf intformnot_wf intformle_wf itermConstant_wf itermAdd_wf itermVar_wf int_formula_prop_and_lemma int_formula_prop_not_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_add_lemma int_term_value_var_lemma int_formula_prop_wf le_wf fun_exp_add1 false_wf fun_exp0_lemma fun-connected-test2 subtract_wf itermSubtract_wf intformless_wf int_term_value_subtract_lemma int_formula_prop_less_lemma set_wf primrec-wf2 subtract-add-cancel fun-connected-step fun-connected_transitivity
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation lambdaFormation independent_pairFormation cut introduction extract_by_obid sqequalHypSubstitution isectElimination thin cumulativity hypothesisEquality functionExtensionality applyEquality hypothesis sqequalRule lambdaEquality functionEquality universeEquality productElimination independent_functionElimination baseClosed independent_isectElimination isect_memberEquality voidElimination voidEquality imageElimination because_Cache rename equalitySymmetry hyp_replacement applyLambdaEquality natural_numberEquality productEquality dependent_functionElimination unionElimination dependent_pairFormation dependent_set_memberEquality addEquality setElimination int_eqEquality intEquality computeAll

Latex:
\mforall{}[T:Type].  \mforall{}f:T  {}\mrightarrow{}  T.  ((\mforall{}x:T.  Dec((f  x)  =  x))  {}\mRightarrow{}  (\mforall{}x,y:T.    (x  is  f*(y)  \mLeftarrow{}{}\mRightarrow{}  \mexists{}n:\mBbbN{}.  (x  =  (f\^{}n  y)))))



Date html generated: 2018_05_21-PM-07_45_39
Last ObjectModification: 2017_07_26-PM-05_23_12

Theory : general


Home Index