Nuprl Lemma : longest-prefix-decomp

[T:Type]. ∀[L:T List]. ∀[P:(T List) ⟶ 𝔹].  (L longest-prefix(P;L) nth_tl(||longest-prefix(P;L)||;L))


Proof




Definitions occuring in Statement :  longest-prefix: longest-prefix(P;L) length: ||as|| nth_tl: nth_tl(n;as) append: as bs list: List bool: 𝔹 uall: [x:A]. B[x] function: x:A ⟶ B[x] universe: Type sqequal: t
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] nat: implies:  Q false: False ge: i ≥  uimplies: supposing a satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top and: P ∧ Q prop: subtype_rel: A ⊆B guard: {T} or: P ∨ Q longest-prefix: longest-prefix(P;L) ifthenelse: if then else fi  btrue: tt append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) so_apply: x[s1;s2;s3] cons: [a b] colength: colength(L) so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] decidable: Dec(P) nil: [] it: so_lambda: λ2x.t[x] so_apply: x[s] sq_type: SQType(T) less_than: a < b squash: T less_than': less_than'(a;b) bfalse: ff let: let listp: List+ bool: 𝔹 unit: Unit uiff: uiff(P;Q) nth_tl: nth_tl(n;as) le_int: i ≤j lt_int: i <j bnot: ¬bb assert: b tl: tl(l) pi2: snd(t) subtract: m le: A ≤ B
Lemmas referenced :  nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf list_wf bool_wf equal-wf-T-base nat_wf colength_wf_list less_than_transitivity1 less_than_irreflexivity list-cases null_nil_lemma reduce_tl_nil_lemma nth_tl_nil length_of_nil_lemma list_ind_nil_lemma product_subtype_list spread_cons_lemma intformeq_wf itermAdd_wf int_formula_prop_eq_lemma int_term_value_add_lemma decidable__le intformnot_wf int_formula_prop_not_lemma le_wf equal_wf subtract_wf itermSubtract_wf int_term_value_subtract_lemma subtype_base_sq set_subtype_base int_subtype_base decidable__equal_int null_cons_lemma reduce_hd_cons_lemma reduce_tl_cons_lemma cons_wf null_wf3 longest-prefix_wf listp_wf subtype_rel_list top_wf eqtt_to_assert assert_of_null eqff_to_assert bool_cases_sqequal bool_subtype_base assert-bnot nil_wf list_ind_cons_lemma length_of_cons_lemma le_int_wf length_wf assert_of_le_int add-subtract-cancel non_neg_length
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination hypothesisEquality hypothesis setElimination rename intWeakElimination natural_numberEquality independent_isectElimination dependent_pairFormation lambdaEquality int_eqEquality intEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality sqequalRule independent_pairFormation computeAll independent_functionElimination sqequalAxiom functionEquality cumulativity applyEquality because_Cache unionElimination promote_hyp hypothesis_subsumption productElimination equalityTransitivity equalitySymmetry applyLambdaEquality dependent_set_memberEquality addEquality baseClosed instantiate imageElimination functionExtensionality equalityElimination universeEquality

Latex:
\mforall{}[T:Type].  \mforall{}[L:T  List].  \mforall{}[P:(T  List)  {}\mrightarrow{}  \mBbbB{}].
    (L  \msim{}  longest-prefix(P;L)  @  nth\_tl(||longest-prefix(P;L)||;L))



Date html generated: 2018_05_21-PM-06_40_21
Last ObjectModification: 2017_07_26-PM-04_53_46

Theory : general


Home Index