Nuprl Lemma : prank-pvar
∀[a:formula()]. uiff(prank(a) = 0 ∈ ℤ;↑pvar?(a))
Proof
Definitions occuring in Statement : 
prank: prank(x)
, 
pvar?: pvar?(v)
, 
formula: formula()
, 
assert: ↑b
, 
uiff: uiff(P;Q)
, 
uall: ∀[x:A]. B[x]
, 
natural_number: $n
, 
int: ℤ
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
so_apply: x[s]
, 
implies: P 
⇒ Q
, 
prank: prank(x)
, 
pvar: pvar(name)
, 
formula_ind: formula_ind, 
pvar?: pvar?(v)
, 
pi1: fst(t)
, 
eq_atom: x =a y
, 
assert: ↑b
, 
ifthenelse: if b then t else f fi 
, 
btrue: tt
, 
all: ∀x:A. B[x]
, 
uiff: uiff(P;Q)
, 
and: P ∧ Q
, 
uimplies: b supposing a
, 
true: True
, 
prop: ℙ
, 
pnot: pnot(sub)
, 
bfalse: ff
, 
false: False
, 
nat: ℕ
, 
guard: {T}
, 
ge: i ≥ j 
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
not: ¬A
, 
top: Top
, 
pand: pand(left;right)
, 
por: por(left;right)
, 
pimp: pimp(left;right)
, 
le: A ≤ B
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
squash: ↓T
, 
iff: P 
⇐⇒ Q
, 
sq_type: SQType(T)
, 
rev_implies: P 
⇐ Q
Lemmas referenced : 
formula-induction, 
uiff_wf, 
equal-wf-T-base, 
prank_wf, 
assert_wf, 
pvar?_wf, 
formula_wf, 
equal-wf-base, 
true_wf, 
nat_properties, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformeq_wf, 
itermAdd_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_add_lemma, 
int_formula_prop_wf, 
false_wf, 
imax_wf, 
assert_witness, 
nat_wf, 
ifthenelse_wf, 
le_int_wf, 
bnot_wf, 
not_wf, 
le_wf, 
le_weakening2, 
decidable__lt, 
equal_wf, 
squash_wf, 
add_functionality_wrt_eq, 
imax_unfold, 
iff_weakening_equal, 
bool_cases, 
subtype_base_sq, 
bool_wf, 
bool_subtype_base, 
eqtt_to_assert, 
assert_of_le_int, 
eqff_to_assert, 
iff_transitivity, 
iff_weakening_uiff, 
assert_of_bnot
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
sqequalRule, 
lambdaEquality, 
intEquality, 
hypothesisEquality, 
hypothesis, 
applyEquality, 
because_Cache, 
baseClosed, 
independent_functionElimination, 
lambdaFormation, 
independent_pairFormation, 
natural_numberEquality, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
atomEquality, 
productElimination, 
applyLambdaEquality, 
setElimination, 
rename, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality, 
voidElimination, 
voidEquality, 
computeAll, 
addEquality, 
independent_pairEquality, 
unionElimination, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
instantiate, 
cumulativity, 
impliesFunctionality
Latex:
\mforall{}[a:formula()].  uiff(prank(a)  =  0;\muparrow{}pvar?(a))
Date html generated:
2018_05_21-PM-08_53_20
Last ObjectModification:
2017_07_26-PM-06_17_05
Theory : general
Home
Index