Nuprl Lemma : prank-pvar

[a:formula()]. uiff(prank(a) 0 ∈ ℤ;↑pvar?(a))


Proof




Definitions occuring in Statement :  prank: prank(x) pvar?: pvar?(v) formula: formula() assert: b uiff: uiff(P;Q) uall: [x:A]. B[x] natural_number: $n int: equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T so_lambda: λ2x.t[x] subtype_rel: A ⊆B so_apply: x[s] implies:  Q prank: prank(x) pvar: pvar(name) formula_ind: formula_ind pvar?: pvar?(v) pi1: fst(t) eq_atom: =a y assert: b ifthenelse: if then else fi  btrue: tt all: x:A. B[x] uiff: uiff(P;Q) and: P ∧ Q uimplies: supposing a true: True prop: pnot: pnot(sub) bfalse: ff false: False nat: guard: {T} ge: i ≥  satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] not: ¬A top: Top pand: pand(left;right) por: por(left;right) pimp: pimp(left;right) le: A ≤ B decidable: Dec(P) or: P ∨ Q squash: T iff: ⇐⇒ Q sq_type: SQType(T) rev_implies:  Q
Lemmas referenced :  formula-induction uiff_wf equal-wf-T-base prank_wf assert_wf pvar?_wf formula_wf equal-wf-base true_wf nat_properties satisfiable-full-omega-tt intformand_wf intformle_wf itermConstant_wf itermVar_wf intformeq_wf itermAdd_wf int_formula_prop_and_lemma int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_add_lemma int_formula_prop_wf false_wf imax_wf assert_witness nat_wf ifthenelse_wf le_int_wf bnot_wf not_wf le_wf le_weakening2 decidable__lt equal_wf squash_wf add_functionality_wrt_eq imax_unfold iff_weakening_equal bool_cases subtype_base_sq bool_wf bool_subtype_base eqtt_to_assert assert_of_le_int eqff_to_assert iff_transitivity iff_weakening_uiff assert_of_bnot
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut thin extract_by_obid sqequalHypSubstitution isectElimination sqequalRule lambdaEquality intEquality hypothesisEquality hypothesis applyEquality because_Cache baseClosed independent_functionElimination lambdaFormation independent_pairFormation natural_numberEquality axiomEquality equalityTransitivity equalitySymmetry atomEquality productElimination applyLambdaEquality setElimination rename independent_isectElimination dependent_pairFormation int_eqEquality dependent_functionElimination isect_memberEquality voidElimination voidEquality computeAll addEquality independent_pairEquality unionElimination imageElimination universeEquality imageMemberEquality instantiate cumulativity impliesFunctionality

Latex:
\mforall{}[a:formula()].  uiff(prank(a)  =  0;\muparrow{}pvar?(a))



Date html generated: 2018_05_21-PM-08_53_20
Last ObjectModification: 2017_07_26-PM-06_17_05

Theory : general


Home Index