Nuprl Lemma : remove-combine-l-ordered-implies-member
∀[T:Type]
  ∀cmp:T ⟶ ℤ. ∀x:T. ∀l:T List.
    (l-ordered(T;x,y.cmp x < cmp y;l) 
⇒ (x ∈ remove-combine(cmp;l)) 
⇒ (¬((cmp x) = 0 ∈ ℤ)))
Proof
Definitions occuring in Statement : 
l-ordered: l-ordered(T;x,y.R[x; y];L)
, 
remove-combine: remove-combine(cmp;l)
, 
l_member: (x ∈ l)
, 
list: T List
, 
less_than: a < b
, 
uall: ∀[x:A]. B[x]
, 
all: ∀x:A. B[x]
, 
not: ¬A
, 
implies: P 
⇒ Q
, 
apply: f a
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
int: ℤ
, 
universe: Type
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
all: ∀x:A. B[x]
, 
so_lambda: λ2x.t[x]
, 
implies: P 
⇒ Q
, 
prop: ℙ
, 
so_lambda: λ2x y.t[x; y]
, 
so_apply: x[s1;s2]
, 
so_apply: x[s]
, 
false: False
, 
iff: P 
⇐⇒ Q
, 
and: P ∧ Q
, 
top: Top
, 
remove-combine: remove-combine(cmp;l)
, 
list_ind: list_ind, 
nil: []
, 
it: ⋅
, 
bool: 𝔹
, 
unit: Unit
, 
btrue: tt
, 
uiff: uiff(P;Q)
, 
uimplies: b supposing a
, 
ifthenelse: if b then t else f fi 
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
bfalse: ff
, 
or: P ∨ Q
, 
sq_type: SQType(T)
, 
guard: {T}
, 
bnot: ¬bb
, 
assert: ↑b
, 
nequal: a ≠ b ∈ T 
, 
less_than: a < b
, 
squash: ↓T
Lemmas referenced : 
list_induction, 
l-ordered_wf, 
less_than_wf, 
l_member_wf, 
remove-combine_wf, 
not_wf, 
equal-wf-T-base, 
list_wf, 
false_wf, 
true_wf, 
l-ordered-nil-true, 
remove-combine-nil, 
nil_member, 
nil_wf, 
eq_int_wf, 
bool_wf, 
eqtt_to_assert, 
assert_of_eq_int, 
satisfiable-full-omega-tt, 
intformand_wf, 
intformless_wf, 
itermVar_wf, 
intformeq_wf, 
itermConstant_wf, 
int_formula_prop_and_lemma, 
int_formula_prop_less_lemma, 
int_term_value_var_lemma, 
int_formula_prop_eq_lemma, 
int_term_value_constant_lemma, 
int_formula_prop_wf, 
eqff_to_assert, 
equal_wf, 
bool_cases_sqequal, 
subtype_base_sq, 
bool_subtype_base, 
assert-bnot, 
neg_assert_of_eq_int, 
lt_int_wf, 
assert_of_lt_int, 
and_wf, 
or_wf, 
cons_member, 
cons_wf, 
all_wf, 
l-ordered-cons, 
remove-combine-cons
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation, 
introduction, 
cut, 
lambdaFormation, 
thin, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
because_Cache, 
sqequalRule, 
lambdaEquality, 
functionEquality, 
cumulativity, 
hypothesisEquality, 
applyEquality, 
functionExtensionality, 
hypothesis, 
dependent_functionElimination, 
intEquality, 
baseClosed, 
independent_functionElimination, 
voidElimination, 
addLevel, 
impliesFunctionality, 
productElimination, 
isect_memberEquality, 
voidEquality, 
levelHypothesis, 
rename, 
natural_numberEquality, 
unionElimination, 
equalityElimination, 
equalityTransitivity, 
equalitySymmetry, 
independent_isectElimination, 
dependent_pairFormation, 
int_eqEquality, 
independent_pairFormation, 
computeAll, 
promote_hyp, 
instantiate, 
dependent_set_memberEquality, 
applyLambdaEquality, 
setElimination, 
imageElimination, 
productEquality, 
universeEquality
Latex:
\mforall{}[T:Type]
    \mforall{}cmp:T  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}x:T.  \mforall{}l:T  List.
        (l-ordered(T;x,y.cmp  x  <  cmp  y;l)  {}\mRightarrow{}  (x  \mmember{}  remove-combine(cmp;l))  {}\mRightarrow{}  (\mneg{}((cmp  x)  =  0)))
Date html generated:
2018_05_21-PM-07_39_12
Last ObjectModification:
2017_07_26-PM-05_13_34
Theory : general
Home
Index