Nuprl Lemma : remove-combine-l-ordered-implies-member

[T:Type]
  ∀cmp:T ⟶ ℤ. ∀x:T. ∀l:T List.
    (l-ordered(T;x,y.cmp x < cmp y;l)  (x ∈ remove-combine(cmp;l))  ((cmp x) 0 ∈ ℤ)))


Proof




Definitions occuring in Statement :  l-ordered: l-ordered(T;x,y.R[x; y];L) remove-combine: remove-combine(cmp;l) l_member: (x ∈ l) list: List less_than: a < b uall: [x:A]. B[x] all: x:A. B[x] not: ¬A implies:  Q apply: a function: x:A ⟶ B[x] natural_number: $n int: universe: Type equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] so_lambda: λ2x.t[x] implies:  Q prop: so_lambda: λ2y.t[x; y] so_apply: x[s1;s2] so_apply: x[s] false: False iff: ⇐⇒ Q and: P ∧ Q top: Top remove-combine: remove-combine(cmp;l) list_ind: list_ind nil: [] it: bool: 𝔹 unit: Unit btrue: tt uiff: uiff(P;Q) uimplies: supposing a ifthenelse: if then else fi  not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] bfalse: ff or: P ∨ Q sq_type: SQType(T) guard: {T} bnot: ¬bb assert: b nequal: a ≠ b ∈  less_than: a < b squash: T
Lemmas referenced :  list_induction l-ordered_wf less_than_wf l_member_wf remove-combine_wf not_wf equal-wf-T-base list_wf false_wf true_wf l-ordered-nil-true remove-combine-nil nil_member nil_wf eq_int_wf bool_wf eqtt_to_assert assert_of_eq_int satisfiable-full-omega-tt intformand_wf intformless_wf itermVar_wf intformeq_wf itermConstant_wf int_formula_prop_and_lemma int_formula_prop_less_lemma int_term_value_var_lemma int_formula_prop_eq_lemma int_term_value_constant_lemma int_formula_prop_wf eqff_to_assert equal_wf bool_cases_sqequal subtype_base_sq bool_subtype_base assert-bnot neg_assert_of_eq_int lt_int_wf assert_of_lt_int and_wf or_wf cons_member cons_wf all_wf l-ordered-cons remove-combine-cons
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation thin extract_by_obid sqequalHypSubstitution isectElimination because_Cache sqequalRule lambdaEquality functionEquality cumulativity hypothesisEquality applyEquality functionExtensionality hypothesis dependent_functionElimination intEquality baseClosed independent_functionElimination voidElimination addLevel impliesFunctionality productElimination isect_memberEquality voidEquality levelHypothesis rename natural_numberEquality unionElimination equalityElimination equalityTransitivity equalitySymmetry independent_isectElimination dependent_pairFormation int_eqEquality independent_pairFormation computeAll promote_hyp instantiate dependent_set_memberEquality applyLambdaEquality setElimination imageElimination productEquality universeEquality

Latex:
\mforall{}[T:Type]
    \mforall{}cmp:T  {}\mrightarrow{}  \mBbbZ{}.  \mforall{}x:T.  \mforall{}l:T  List.
        (l-ordered(T;x,y.cmp  x  <  cmp  y;l)  {}\mRightarrow{}  (x  \mmember{}  remove-combine(cmp;l))  {}\mRightarrow{}  (\mneg{}((cmp  x)  =  0)))



Date html generated: 2018_05_21-PM-07_39_12
Last ObjectModification: 2017_07_26-PM-05_13_34

Theory : general


Home Index