Nuprl Lemma : sub-bag-list-if-bag-no-repeats-sq

[A:Type]. ∀as:bag(A). ∀bs:A List.  (bag-no-repeats(A;as)  b_all(A;as;x.(x ∈ bs))  (↓sub-bag(A;as;bs)))


Proof




Definitions occuring in Statement :  b_all: b_all(T;b;x.P[x]) sub-bag: sub-bag(T;as;bs) bag-no-repeats: bag-no-repeats(T;bs) bag: bag(T) l_member: (x ∈ l) list: List uall: [x:A]. B[x] all: x:A. B[x] squash: T implies:  Q universe: Type
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T all: x:A. B[x] implies:  Q squash: T exists: x:A. B[x] prop: so_lambda: λ2x.t[x] so_apply: x[s] bag-no-repeats: bag-no-repeats(T;bs) sq_stable: SqStable(P) and: P ∧ Q uimplies: supposing a iff: ⇐⇒ Q rev_implies:  Q b_all: b_all(T;b;x.P[x]) subtype_rel: A ⊆B empty-bag: {} not: ¬A false: False uiff: uiff(P;Q) or: P ∨ Q guard: {T} sub-bag: sub-bag(T;as;bs) bag-append: as bs true: True append: as bs so_lambda: so_lambda(x,y,z.t[x; y; z]) top: Top so_apply: x[s1;s2;s3] cons-bag: x.b
Lemmas referenced :  bag_to_squash_list b_all_wf l_member_wf bag-no-repeats_wf sq_stable__no_repeats no_repeats-bag l_all_iff list-member-bag-member list_induction all_wf list_wf no_repeats_wf l_all_wf2 squash_wf sub-bag_wf list-subtype-bag empty-sub-bag nil_wf null_nil_lemma btrue_wf member-implies-null-eq-bfalse btrue_neq_bfalse l_all_cons no_repeats_cons l_member_decomp append_wf cons_wf bag_wf member_append member_singleton and_wf equal_wf exists_wf true_wf bag-append-comm-assoc bag-append_wf iff_weakening_equal bag-append-comm list_ind_cons_lemma list_ind_nil_lemma cons-bag_wf
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation introduction cut lambdaFormation extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality imageElimination productElimination promote_hyp hypothesis equalitySymmetry hyp_replacement applyLambdaEquality cumulativity sqequalRule lambdaEquality rename independent_functionElimination independent_isectElimination imageMemberEquality baseClosed dependent_functionElimination setElimination setEquality because_Cache functionEquality applyEquality voidEquality voidElimination equalityTransitivity universeEquality addLevel allFunctionality impliesFunctionality levelHypothesis unionElimination inlFormation inrFormation allLevelFunctionality impliesLevelFunctionality dependent_set_memberEquality independent_pairFormation natural_numberEquality dependent_pairFormation isect_memberEquality

Latex:
\mforall{}[A:Type]
    \mforall{}as:bag(A).  \mforall{}bs:A  List.    (bag-no-repeats(A;as)  {}\mRightarrow{}  b\_all(A;as;x.(x  \mmember{}  bs))  {}\mRightarrow{}  (\mdownarrow{}sub-bag(A;as;bs)))



Date html generated: 2018_05_21-PM-07_39_04
Last ObjectModification: 2017_07_26-PM-05_13_25

Theory : general


Home Index