Nuprl Lemma : q-linear-equal

[k:ℕ]. ∀[X:ℕ ⟶ ℚ]. ∀[y,z:ℚ List].
  (q-linear(k;j.X[j];y) q-linear(k;j.X[j];z) ∈ ℚsupposing 
     ((∀i:ℕk. (y[i] z[i] ∈ ℚ)) and 
     (k ≤ ||z||) and 
     (k ≤ ||y||))


Proof




Definitions occuring in Statement :  q-linear: q-linear(k;i.X[i];y) rationals: select: L[n] length: ||as|| list: List int_seg: {i..j-} nat: uimplies: supposing a uall: [x:A]. B[x] so_apply: x[s] le: A ≤ B all: x:A. B[x] function: x:A ⟶ B[x] natural_number: $n equal: t ∈ T
Definitions unfolded in proof :  uall: [x:A]. B[x] member: t ∈ T nat: implies:  Q false: False ge: i ≥  uimplies: supposing a not: ¬A satisfiable_int_formula: satisfiable_int_formula(fmla) exists: x:A. B[x] all: x:A. B[x] top: Top and: P ∧ Q prop: guard: {T} int_seg: {i..j-} lelt: i ≤ j < k decidable: Dec(P) or: P ∨ Q le: A ≤ B so_apply: x[s] true: True less_than': less_than'(a;b) squash: T so_lambda: λ2x.t[x] subtype_rel: A ⊆B iff: ⇐⇒ Q rev_implies:  Q less_than: a < b nat_plus: +
Lemmas referenced :  nat_properties full-omega-unsat intformand_wf intformle_wf itermConstant_wf itermVar_wf intformless_wf istype-int int_formula_prop_and_lemma istype-void int_formula_prop_le_lemma int_term_value_constant_lemma int_term_value_var_lemma int_formula_prop_less_lemma int_formula_prop_wf ge_wf less_than_wf int_seg_wf int_seg_properties le_wf length_wf rationals_wf list_wf nat_wf subtract-1-ge-0 select_wf decidable__le intformnot_wf int_formula_prop_not_lemma decidable__lt decidable__equal_int intformeq_wf int_formula_prop_eq_lemma istype-false equal_wf squash_wf true_wf istype-universe q-linear-base subtype_rel_self iff_weakening_equal qmul_wf lelt_wf int_term_value_subtract_lemma itermSubtract_wf subtract_wf qadd_wf satisfiable-full-omega-tt all_wf q-linear-unroll
Rules used in proof :  sqequalSubstitution sqequalTransitivity computationStep sqequalReflexivity isect_memberFormation_alt introduction cut extract_by_obid sqequalHypSubstitution isectElimination thin hypothesisEquality hypothesis setElimination rename intWeakElimination lambdaFormation_alt natural_numberEquality independent_isectElimination approximateComputation independent_functionElimination dependent_pairFormation_alt lambdaEquality_alt int_eqEquality dependent_functionElimination isect_memberEquality_alt voidElimination sqequalRule independent_pairFormation universeIsType axiomEquality equalityTransitivity equalitySymmetry inhabitedIsType functionIsTypeImplies functionIsType productElimination equalityIsType1 because_Cache unionElimination applyEquality dependent_set_memberEquality_alt imageElimination universeEquality imageMemberEquality baseClosed instantiate lambdaFormation functionExtensionality dependent_set_memberEquality functionEquality computeAll voidEquality isect_memberEquality intEquality dependent_pairFormation lambdaEquality isect_memberFormation

Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[X:\mBbbN{}  {}\mrightarrow{}  \mBbbQ{}].  \mforall{}[y,z:\mBbbQ{}  List].
    (q-linear(k;j.X[j];y)  =  q-linear(k;j.X[j];z))  supposing 
          ((\mforall{}i:\mBbbN{}k.  (y[i]  =  z[i]))  and 
          (k  \mleq{}  ||z||)  and 
          (k  \mleq{}  ||y||))



Date html generated: 2019_10_16-PM-00_33_23
Last ObjectModification: 2018_10_10-AM-11_05_23

Theory : rationals


Home Index