Nuprl Lemma : q-linear-equal
∀[k:ℕ]. ∀[X:ℕ ⟶ ℚ]. ∀[y,z:ℚ List].
  (q-linear(k;j.X[j];y) = q-linear(k;j.X[j];z) ∈ ℚ) supposing 
     ((∀i:ℕk. (y[i] = z[i] ∈ ℚ)) and 
     (k ≤ ||z||) and 
     (k ≤ ||y||))
Proof
Definitions occuring in Statement : 
q-linear: q-linear(k;i.X[i];y)
, 
rationals: ℚ
, 
select: L[n]
, 
length: ||as||
, 
list: T List
, 
int_seg: {i..j-}
, 
nat: ℕ
, 
uimplies: b supposing a
, 
uall: ∀[x:A]. B[x]
, 
so_apply: x[s]
, 
le: A ≤ B
, 
all: ∀x:A. B[x]
, 
function: x:A ⟶ B[x]
, 
natural_number: $n
, 
equal: s = t ∈ T
Definitions unfolded in proof : 
uall: ∀[x:A]. B[x]
, 
member: t ∈ T
, 
nat: ℕ
, 
implies: P 
⇒ Q
, 
false: False
, 
ge: i ≥ j 
, 
uimplies: b supposing a
, 
not: ¬A
, 
satisfiable_int_formula: satisfiable_int_formula(fmla)
, 
exists: ∃x:A. B[x]
, 
all: ∀x:A. B[x]
, 
top: Top
, 
and: P ∧ Q
, 
prop: ℙ
, 
guard: {T}
, 
int_seg: {i..j-}
, 
lelt: i ≤ j < k
, 
decidable: Dec(P)
, 
or: P ∨ Q
, 
le: A ≤ B
, 
so_apply: x[s]
, 
true: True
, 
less_than': less_than'(a;b)
, 
squash: ↓T
, 
so_lambda: λ2x.t[x]
, 
subtype_rel: A ⊆r B
, 
iff: P 
⇐⇒ Q
, 
rev_implies: P 
⇐ Q
, 
less_than: a < b
, 
nat_plus: ℕ+
Lemmas referenced : 
nat_properties, 
full-omega-unsat, 
intformand_wf, 
intformle_wf, 
itermConstant_wf, 
itermVar_wf, 
intformless_wf, 
istype-int, 
int_formula_prop_and_lemma, 
istype-void, 
int_formula_prop_le_lemma, 
int_term_value_constant_lemma, 
int_term_value_var_lemma, 
int_formula_prop_less_lemma, 
int_formula_prop_wf, 
ge_wf, 
less_than_wf, 
int_seg_wf, 
int_seg_properties, 
le_wf, 
length_wf, 
rationals_wf, 
list_wf, 
nat_wf, 
subtract-1-ge-0, 
select_wf, 
decidable__le, 
intformnot_wf, 
int_formula_prop_not_lemma, 
decidable__lt, 
decidable__equal_int, 
intformeq_wf, 
int_formula_prop_eq_lemma, 
istype-false, 
equal_wf, 
squash_wf, 
true_wf, 
istype-universe, 
q-linear-base, 
subtype_rel_self, 
iff_weakening_equal, 
qmul_wf, 
lelt_wf, 
int_term_value_subtract_lemma, 
itermSubtract_wf, 
subtract_wf, 
qadd_wf, 
satisfiable-full-omega-tt, 
all_wf, 
q-linear-unroll
Rules used in proof : 
sqequalSubstitution, 
sqequalTransitivity, 
computationStep, 
sqequalReflexivity, 
isect_memberFormation_alt, 
introduction, 
cut, 
extract_by_obid, 
sqequalHypSubstitution, 
isectElimination, 
thin, 
hypothesisEquality, 
hypothesis, 
setElimination, 
rename, 
intWeakElimination, 
lambdaFormation_alt, 
natural_numberEquality, 
independent_isectElimination, 
approximateComputation, 
independent_functionElimination, 
dependent_pairFormation_alt, 
lambdaEquality_alt, 
int_eqEquality, 
dependent_functionElimination, 
isect_memberEquality_alt, 
voidElimination, 
sqequalRule, 
independent_pairFormation, 
universeIsType, 
axiomEquality, 
equalityTransitivity, 
equalitySymmetry, 
inhabitedIsType, 
functionIsTypeImplies, 
functionIsType, 
productElimination, 
equalityIsType1, 
because_Cache, 
unionElimination, 
applyEquality, 
dependent_set_memberEquality_alt, 
imageElimination, 
universeEquality, 
imageMemberEquality, 
baseClosed, 
instantiate, 
lambdaFormation, 
functionExtensionality, 
dependent_set_memberEquality, 
functionEquality, 
computeAll, 
voidEquality, 
isect_memberEquality, 
intEquality, 
dependent_pairFormation, 
lambdaEquality, 
isect_memberFormation
Latex:
\mforall{}[k:\mBbbN{}].  \mforall{}[X:\mBbbN{}  {}\mrightarrow{}  \mBbbQ{}].  \mforall{}[y,z:\mBbbQ{}  List].
    (q-linear(k;j.X[j];y)  =  q-linear(k;j.X[j];z))  supposing 
          ((\mforall{}i:\mBbbN{}k.  (y[i]  =  z[i]))  and 
          (k  \mleq{}  ||z||)  and 
          (k  \mleq{}  ||y||))
Date html generated:
2019_10_16-PM-00_33_23
Last ObjectModification:
2018_10_10-AM-11_05_23
Theory : rationals
Home
Index